The solution to $\mathbf{x}^{\prime}=\left[\begin{array}{cc}-2 & 0 \\ 21 & 5\end{array}\right] \mathbf{x} \quad$ is $\quad \mathbf{x}=c_{1}\left[\begin{array}{l}0 \\ 1\end{array}\right] e^{5 t}+c_{2}\left[\begin{array}{c}-1 \\ 3\end{array}\right] e^{-2 t}$
Answer the following questions for $A=\left[\begin{array}{cc}-2 & 0 \\ 21 & 5\end{array}\right]$:
The smaller eigenvalue of A is $r_{1}=$ \qquad . An eigenvector corresponding to r_{1} is $\mathbf{v}=$

The larger eigenvalue of A is $r_{2}=$ \qquad . An eigenvector corresponding to r_{2} is $\mathbf{w}=$

The general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$ is

For large positive values of t which is larger: $e^{r_{1} t}$ or $e^{r_{2} t}$?
For the following problems, consider the case when $c_{1} \neq 0$ and $c_{2} \neq 0$ where the general solution is $\mathbf{x}=c_{1}\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] e^{r_{1} t}+c_{2}\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right] e^{r_{2} t}$,
For large positive values of t, which term dominates: $c_{1}\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] e^{r_{1} t} \quad$ or $\quad c_{2}\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right] e^{r_{2} t}$?
Thus for large positive values of t, such trajectories (where $c_{1} c_{2} \neq 0$) when projected into the x_{1}, x_{2} plane exhibit the following behavior (select all that apply):

* moves away from the origin.
* moves toward the origin.
* approaches the line $y=m x$ with slope $m=$ \qquad
* approaches a line $y=m x+b$ for $b \neq 0$ with slope $m=$ \qquad . Note this case corresponds to where both $\left\|c_{1} \mathbf{v}\right\| e^{r_{1} t}$ and $\left\|c_{2} \mathbf{w}\right\| e^{r_{2} t}$ are large, but one is significantly larger than the other.

For large negative values of t which is larger: $e^{r_{1} t}$ or $e^{r_{2} t}$?
For large negative values of t, which term dominates: $c_{1}\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] e^{r_{1} t} \quad$ or $\quad c_{2}\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right] e^{r_{2} t}$?
Thus for large negative values of t, such trajectories (where $c_{1} c_{2} \neq 0$) when projected into the x_{1}, x_{2} plane exhibit the following behavior (select all that apply):

* moves away from the origin.
* moves toward the origin.
* approaches the line $y=m x$ with slope $m=$ \qquad
* approaches a line $y=m x+b$ for $b \neq 0$ with slope $m=$ \qquad . Note this case corresponds to where both $\left\|c_{1} \mathbf{v}\right\| e^{r_{1} t}$ and $\left\|c_{2} \mathbf{w}\right\| e^{r_{2} t}$ are large, but one is significantly larger than the other.
the solution to $\mathbf{x}^{\prime}=\left[\begin{array}{cc}-2 & 0 \\ -9 & -5\end{array}\right] \mathbf{x} \quad$ is $\quad \mathbf{x}=c_{1}\left[\begin{array}{l}0 \\ 1\end{array}\right] e^{-5 t}+c_{2}\left[\begin{array}{c}-1 \\ 3\end{array}\right] e^{-2 t}$
Answer the following questions for $A=\left[\begin{array}{cc}-2 & 0 \\ -9 & -5\end{array}\right]$:
The smaller eigenvalue of A is $r_{1}=$ \qquad . An eigenvector corresponding to r_{1} is $\mathbf{v}=$

The larger eigenvalue of A is $r_{2}=$ \qquad . An eigenvector corresponding to r_{2} is $\mathbf{w}=$

The general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$ is

For large positive values of t which is larger: $e^{r_{1} t}$ or $e^{r_{2} t}$?
For the following problems, consider the case when $c_{1} \neq 0$ and $c_{2} \neq 0$ where the general solution is $\mathbf{x}=c_{1}\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] e^{r_{1} t}+c_{2}\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right] e^{r_{2} t}$,
For large positive values of t, which term dominates: $c_{1}\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] e^{r_{1} t} \quad$ or $\quad c_{2}\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right] e^{r_{2} t}$?
Thus for large positive values of t, such trajectories (where $c_{1} c_{2} \neq 0$) when projected into the x_{1}, x_{2} plane exhibit the following behavior (select all that apply):

* moves away from the origin.
* moves toward the origin.
* approaches the line $y=m x$ with slope $m=$ \qquad
* approaches a line $y=m x+b$ for $b \neq 0$ with slope $m=$ \qquad . Note this case corresponds to where both $\left\|c_{1} \mathbf{v}\right\| e^{r_{1} t}$ and $\left\|c_{2} \mathbf{w}\right\| e^{r_{2} t}$ are large, but one is significantly larger than the other.

For large negative values of t which is larger: $e^{r_{1} t}$ or $e^{r_{2} t}$?
For large negative values of t, which term dominates: $c_{1}\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] e^{r_{1} t} \quad$ or $\quad c_{2}\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right] e^{r_{2} t}$?
Thus for large negative values of t, such trajectories (where $c_{1} c_{2} \neq 0$) when projected into the x_{1}, x_{2} plane exhibit the following behavior (select all that apply):

* moves away from the origin.
* moves toward the origin.
* approaches the line $y=m x$ with slope $m=$ \qquad
* approaches a line $y=m x+b$ for $b \neq 0$ with slope $m=$ \qquad . Note this case corresponds to where both $\left\|c_{1} \mathbf{v}\right\| e^{r_{1} t}$ and $\left\|c_{2} \mathbf{w}\right\| e^{r_{2} t}$ are large, but one is significantly larger than the other.
the solution to $\mathbf{x}^{\prime}=\left[\begin{array}{ll}2 & 0 \\ 9 & 5\end{array}\right] \mathbf{x} \quad$ is $\quad \mathbf{x}=c_{1}\left[\begin{array}{l}0 \\ 1\end{array}\right] e^{5 t}+c_{2}\left[\begin{array}{c}-1 \\ 3\end{array}\right] e^{2 t}$
Answer the following questions for $A=\left[\begin{array}{ll}2 & 0 \\ 9 & 5\end{array}\right]$:
The smaller eigenvalue of A is $r_{1}=$ \qquad . An eigenvector corresponding to r_{1} is $\mathbf{v}=$

The larger eigenvalue of A is $r_{2}=$ \qquad . An eigenvector corresponding to r_{2} is $\mathbf{w}=$

The general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$ is

For large positive values of t which is larger: $e^{r_{1} t}$ or $e^{r_{2} t}$?
For the following problems, consider the case when $c_{1} \neq 0$ and $c_{2} \neq 0$ where the general solution is $\mathbf{x}=c_{1}\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] e^{r_{1} t}+c_{2}\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right] e^{r_{2} t}$,
For large positive values of t, which term dominates: $\quad c_{1}\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] e^{r_{1} t} \quad$ or $\quad c_{2}\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right] e^{r_{2} t}$?
Thus for large positive values of t, such trajectories (where $c_{1} c_{2} \neq 0$) when projected into the x_{1}, x_{2} plane exhibit the following behavior (select all that apply):

* moves away from the origin.
* moves toward the origin.
* approaches the line $y=m x$ with slope $m=$ \qquad
* approaches a line $y=m x+b$ for $b \neq 0$ with slope $m=$ \qquad . Note this case corresponds to where both $\left\|c_{1} \mathbf{v}\right\| e^{r_{1} t}$ and $\left\|c_{2} \mathbf{w}\right\| e^{r_{2} t}$ are large, but one is significantly larger than the other.

For large negative values of t which is larger: $e^{r_{1} t}$ or $e^{r_{2} t}$?
For large negative values of t, which term dominates: $c_{1}\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] e^{r_{1} t} \quad$ or $\quad c_{2}\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right] e^{r_{2} t}$?
Thus for large negative values of t, such trajectories (where $c_{1} c_{2} \neq 0$) when projected into the x_{1}, x_{2} plane exhibit the following behavior (select all that apply):

* moves away from the origin.
* moves toward the origin.
* approaches the line $y=m x$ with slope $m=$ \qquad
* approaches a line $y=m x+b$ for $b \neq 0$ with slope $m=$ \qquad . Note this case corresponds to where both $\left\|c_{1} \mathbf{v}\right\| e^{r_{1} t}$ and $\left\|c_{2} \mathbf{w}\right\| e^{r_{2} t}$ are large, but one is significantly larger than the other.

