Section 7.5 (where A has 2 real distinct nonzero eigenvalues): Solve $\mathbf{x}^{\prime}=\left[\begin{array}{cc}-2 & 0 \\ 21 & 5\end{array}\right] \mathbf{x}$
Step 1: Find eigenvalues:
$\operatorname{det}(A-r I)=\left[\begin{array}{cc}-2-r & 0 \\ 21 & 5-r\end{array}\right]=$

Step 2: For each eigenvalue, find one eigenvector. I.e., find one NONZERO solution to $(A-r I) \mathbf{v}=\mathbf{0}$

General solution:

Initial Value: $\left[\begin{array}{l}x_{1}(0) \\ x_{2}(0)\end{array}\right]=\left[\begin{array}{c}-1 \\ 3\end{array}\right]$,
IVP solution: \qquad
For this IVP solution:
$x_{1}(t)=$ \qquad
$x_{2}(t)=$ \qquad
Solve for x_{1} in terms of x_{2} :

Answer the following questions for $A=\left[\begin{array}{cc}-2 & 0 \\ 21 & 5\end{array}\right]$:
The smaller eigenvalue of A is $r_{1}=$ \qquad . An eigenvector corresponding to r_{1} is $\mathbf{v}=$ The larger eigenvalue of A is $r_{2}=$ \qquad . An eigenvector corresponding to r_{2} is $\mathbf{w}=$

The general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$ is

For large positive values of t which is larger: $e^{r_{1} t}$ or $e^{r_{2} t}$?
For the following problems, consider the case when $c_{1} \neq 0$ and $c_{2} \neq 0$ where the general solution is $\mathbf{x}=c_{1}\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] e^{r_{1} t}+c_{2}\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right] e^{r_{2} t}$,

For large positive values of t, which term dominates: $c_{1}\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] e^{r_{1} t}$ or $c_{2}\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right] e^{r_{2} t}$?
Thus for large positive values of t, such trajectories (where $c_{1} c_{2} \neq 0$) when projected into the x_{1}, x_{2} plane exhibit the following behavior (select all that apply):

* moves away from the origin.
* moves toward the origin.
* approaches the line $y=m x$ with slope $m=$ \qquad
* approaches a line $y=m x+b$ for $b \neq 0$ with slope $m=$ \qquad . Note this case corresponds to where both $\left\|c_{1} \mathbf{v}\right\| e^{r_{1} t}$ and $\left\|c_{2} \mathbf{w}\right\| e^{r_{2} t}$ are large, but one is significantly larger than the other.

For large negative values of t which is larger: $e^{r_{1} t}$ or $e^{r_{2} t}$?
For large negative values of t, which term dominates: $\quad c_{1}\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] e^{r_{1} t} \quad$ or $\quad c_{2}\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right] e^{r_{2} t}$?
Thus for large negative values of t, such trajectories (where $c_{1} c_{2} \neq 0$) when projected into the x_{1}, x_{2} plane exhibit the following behavior (select all that apply):

* moves away from the origin.
* moves toward the origin.
* approaches the line $y=m x$ with slope $m=$ \qquad
* approaches a line $y=m x+b$ for $b \neq 0$ with slope $m=$ \qquad . Note this case corresponds to where both $\left\|c_{1} \mathbf{v}\right\| e^{r_{1} t}$ and $\left\|c_{2} \mathbf{w}\right\| e^{r_{2} t}$ are large, but one is significantly larger than the other.

Give that the solution to $\mathbf{x}^{\prime}=\left[\begin{array}{cc}-2 & 0 \\ 21 & 5\end{array}\right] \mathbf{x} \quad$ is $\quad \mathbf{x}=c_{1}\left[\begin{array}{l}0 \\ 1\end{array}\right] e^{5 t}+c_{2}\left[\begin{array}{c}-1 \\ 3\end{array}\right] e^{-2 t}$

Graph the solution to the IVP $\left[\begin{array}{l}x_{1}(0) \\ x_{2}(0)\end{array}\right]=\left[\begin{array}{c}-1 \\ 3\end{array}\right]$ in the
t, x_{1}-plane
t, x_{2}-plane

x_{1}, x_{2}-plane

Graph the solution to the IVP $\left[\begin{array}{l}x_{1}(0) \\ x_{2}(0)\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ in the

$$
t, x_{1} \text {-plane }
$$

t, x_{2}-plane

x_{1}, x_{2}-plane

The equilibrium solution for this system of equations is $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=[\quad]$.
$\frac{d x_{2}}{d x_{1}}=$ \qquad
Plot several direction vectors where
the slope is 0 and where slope is vertical.
Graph several trajectories.

Section 7.5 (where A has 2 real distinct nonzero eigenvalues): Solve $\mathbf{x}^{\prime}=\left[\begin{array}{cc}-2 & 0 \\ -9 & -5\end{array}\right] \mathbf{x}$
Step 1: Find eigenvalues:
$\operatorname{det}(A-r I)=\left[\begin{array}{cc}-2-r & 0 \\ -9 & -5-r\end{array}\right]=$

Step 2: For each eigenvalue, find one eigenvector. I.e., find one NONZERO solution to $(A-r I) \mathbf{v}=\mathbf{0}$

General solution:

Initial Value: $\left[\begin{array}{l}x_{1}(0) \\ x_{2}(0)\end{array}\right]=\left[\begin{array}{c}-1 \\ 3\end{array}\right]$,
IVP solution: \qquad
For this IVP solution:
$x_{1}(t)=$ \qquad
$x_{2}(t)=$ \qquad
Solve for x_{1} in terms of x_{2} :

Answer the following questions for $A=\left[\begin{array}{cc}-2 & 0 \\ -9 & -5\end{array}\right]$:
The smaller eigenvalue of A is $r_{1}=$ \qquad . An eigenvector corresponding to r_{1} is $\mathbf{v}=$ The larger eigenvalue of A is $r_{2}=$ \qquad . An eigenvector corresponding to r_{2} is $\mathbf{w}=$

The general solution to $\mathrm{x}^{\prime}=A \mathrm{x}$ is

For large positive values of t which is larger: $e^{r_{1} t}$ or $e^{r_{2} t}$?
For the following problems, consider the case when $c_{1} \neq 0$ and $c_{2} \neq 0$ where the general solution is $\mathbf{x}=c_{1}\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] e^{r_{1} t}+c_{2}\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right] e^{r_{2} t}$,

For large positive values of t, which term dominates: $c_{1}\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] e^{r_{1} t}$ or $c_{2}\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right] e^{r_{2} t}$?
Thus for large positive values of t, such trajectories (where $c_{1} c_{2} \neq 0$) when projected into the x_{1}, x_{2} plane exhibit the following behavior (select all that apply):

* moves away from the origin.
* moves toward the origin.
* approaches the line $y=m x$ with slope $m=$ \qquad
* approaches a line $y=m x+b$ for $b \neq 0$ with slope $m=$ \qquad . Note this case corresponds to where both $\left\|c_{1} \mathbf{v}\right\| e^{r_{1} t}$ and $\left\|c_{2} \mathbf{w}\right\| e^{r_{2} t}$ are large, but one is significantly larger than the other.

For large negative values of t which is larger: $e^{r_{1} t}$ or $e^{r_{2} t}$?
For large negative values of t, which term dominates: $\quad c_{1}\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] e^{r_{1} t} \quad$ or $\quad c_{2}\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right] e^{r_{2} t}$?
Thus for large negative values of t, such trajectories (where $c_{1} c_{2} \neq 0$) when projected into the x_{1}, x_{2} plane exhibit the following behavior (select all that apply):

* moves away from the origin.
* moves toward the origin.
* approaches the line $y=m x$ with slope $m=$ \qquad
* approaches a line $y=m x+b$ for $b \neq 0$ with slope $m=$ \qquad . Note this case corresponds to where both $\left\|c_{1} \mathbf{v}\right\| e^{r_{1} t}$ and $\left\|c_{2} \mathbf{w}\right\| e^{r_{2} t}$ are large, but one is significantly larger than the other.

Give that the solution to $\mathbf{x}^{\prime}=\left[\begin{array}{cc}-2 & 0 \\ -9 & -5\end{array}\right] \mathbf{x} \quad$ is $\quad \mathbf{x}=c_{1}\left[\begin{array}{l}0 \\ 1\end{array}\right] e^{-5 t}+c_{2}\left[\begin{array}{c}-1 \\ 3\end{array}\right] e^{-2 t}$

Graph the solution to the IVP $\left[\begin{array}{l}x_{1}(0) \\ x_{2}(0)\end{array}\right]=\left[\begin{array}{c}-1 \\ 3\end{array}\right]$ in the
t, x_{1}-plane
t, x_{2}-plane
x_{1}, x_{2}-plane

Graph the solution to the IVP $\left[\begin{array}{l}x_{1}(0) \\ x_{2}(0)\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ in the
t, x_{1}-plane

t, x_{2}-plane

x_{1}, x_{2}-plane

The equilibrium solution for this system of equations is $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=[\quad]$.
$\frac{d x_{2}}{d x_{1}}=$ \qquad
Plot several direction vectors where
the slope is 0 and where slope is vertical.
Graph several trajectories.

Section 7.5 (where A has 2 real distinct nonzero eigenvalues): Solve $\mathbf{x}^{\prime}=\left[\begin{array}{ll}2 & 0 \\ 9 & 5\end{array}\right] \mathbf{x}$
Step 1: Find eigenvalues:
$\operatorname{det}(A-r I)=\left[\begin{array}{cc}2-r & 0 \\ 9 & 5-r\end{array}\right]=$

Step 2: For each eigenvalue, find one eigenvector. I.e., find one NONZERO solution to $(A-r I) \mathbf{v}=\mathbf{0}$

General solution:

Initial Value: $\left[\begin{array}{l}x_{1}(0) \\ x_{2}(0)\end{array}\right]=\left[\begin{array}{c}-1 \\ 3\end{array}\right]$,
IVP solution: \qquad
For this IVP solution:
$x_{1}(t)=$ \qquad
$x_{2}(t)=$ \qquad
Solve for x_{1} in terms of x_{2} :

Answer the following questions for $A=\left[\begin{array}{ll}2 & 0 \\ 9 & 5\end{array}\right]$:
The smaller eigenvalue of A is $r_{1}=$ \qquad . An eigenvector corresponding to r_{1} is $\mathbf{v}=$ The larger eigenvalue of A is $r_{2}=$ \qquad . An eigenvector corresponding to r_{2} is $\mathbf{w}=$

The general solution to $\mathrm{x}^{\prime}=A \mathrm{x}$ is

For large positive values of t which is larger: $e^{r_{1} t}$ or $e^{r_{2} t}$?
For the following problems, consider the case when $c_{1} \neq 0$ and $c_{2} \neq 0$ where the general solution is $\mathbf{x}=c_{1}\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] e^{r_{1} t}+c_{2}\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right] e^{r_{2} t}$,

For large positive values of t, which term dominates: $c_{1}\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] e^{r_{1} t}$ or $c_{2}\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right] e^{r_{2} t}$?
Thus for large positive values of t, such trajectories (where $c_{1} c_{2} \neq 0$) when projected into the x_{1}, x_{2} plane exhibit the following behavior (select all that apply):

* moves away from the origin.
* moves toward the origin.
* approaches the line $y=m x$ with slope $m=$ \qquad
* approaches a line $y=m x+b$ for $b \neq 0$ with slope $m=$ \qquad . Note this case corresponds to where both $\left\|c_{1} \mathbf{v}\right\| e^{r_{1} t}$ and $\left\|c_{2} \mathbf{w}\right\| e^{r_{2} t}$ are large, but one is significantly larger than the other.

For large negative values of t which is larger: $e^{r_{1} t}$ or $e^{r_{2} t}$?
For large negative values of t, which term dominates: $\quad c_{1}\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right] e^{r_{1} t} \quad$ or $\quad c_{2}\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right] e^{r_{2} t}$?
Thus for large negative values of t, such trajectories (where $c_{1} c_{2} \neq 0$) when projected into the x_{1}, x_{2} plane exhibit the following behavior (select all that apply):

* moves away from the origin.
* moves toward the origin.
* approaches the line $y=m x$ with slope $m=$ \qquad
* approaches a line $y=m x+b$ for $b \neq 0$ with slope $m=$ \qquad . Note this case corresponds to where both $\left\|c_{1} \mathbf{v}\right\| e^{r_{1} t}$ and $\left\|c_{2} \mathbf{w}\right\| e^{r_{2} t}$ are large, but one is significantly larger than the other.

Give that the solution to $\mathbf{x}^{\prime}=\left[\begin{array}{ll}2 & 0 \\ 9 & 5\end{array}\right] \mathbf{x} \quad$ is $\quad \mathbf{x}=c_{1}\left[\begin{array}{l}0 \\ 1\end{array}\right] e^{5 t}+c_{2}\left[\begin{array}{c}-1 \\ 3\end{array}\right] e^{2 t}$

Graph the solution to the IVP $\left[\begin{array}{l}x_{1}(0) \\ x_{2}(0)\end{array}\right]=\left[\begin{array}{c}-1 \\ 3\end{array}\right]$ in the
t, x_{1}-plane
t, x_{2}-plane

x_{1}, x_{2}-plane

Graph the solution to the IVP $\left[\begin{array}{l}x_{1}(0) \\ x_{2}(0)\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ in the

$$
t, x_{1} \text {-plane }
$$

t, x_{2}-plane

x_{1}, x_{2}-plane

The equilibrium solution for this system of equations is $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=[\quad]$.
$\frac{d x_{2}}{d x_{1}}=$ \qquad
Plot several direction vectors where
the slope is 0 and where slope is vertical.
Graph several trajectories.

Find the equilibrium solution(s) for $\mathbf{x}^{\prime}=A \mathbf{x}$
Recall a solution is an equilibrium solution iff $\mathbf{x}(t)=\mathbf{C}$ iff $\mathbf{x}^{\prime}(t)=0$
Setting $\mathbf{x}^{\prime}=0$, implies $\mathbf{0}=A \mathbf{x}$.
Thus $\mathbf{x}=\mathbf{C}$ is an equilibrium solution iff it is a solution to $\mathbf{0}=A \mathbf{x}$.
Case 1 (not emphasized/covered): $\operatorname{det}(A)=0$.
In this case, $A \mathbf{x}=\mathbf{0}$ has an infinite number of solutions. Note this case corresponds to the case when 0 is an eigenvalue of A since there are nonzero solutions to $A \mathbf{v}=0 \mathbf{v}$

Case 2: $\operatorname{det}(A) \neq 0$.
Then $A \mathbf{x}=\mathbf{0}$ has a unique solution, $\mathbf{x}=$
Thus if $\operatorname{det}(A) \neq 0, \mathbf{x}=\quad$ is the only equilibrium solution of $\mathbf{x}^{\prime}=A \mathbf{x}$

Slope fields:

* For complex eigenvalue case, one slope is needed.
* For real eigenvalue case, 0 and ∞ slopes can be helpful and can catch graphing errors, but your graph does not need to be that accurate.

For $\left[\begin{array}{l}x_{1}^{\prime} \\ x_{2}^{\prime}\end{array}\right]=\left[\begin{array}{ll}-2 & 0 \\ 21 & 5\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=$
$\frac{d x_{1}}{d t}=$
$\frac{d x_{2}}{d t}=$
$\frac{d x_{2}}{d x_{1}}=$

Slope 0:

Slope ∞ :

For $\left[\begin{array}{l}x_{1}^{\prime} \\ x_{2}^{\prime}\end{array}\right]=\left[\begin{array}{cc}-2 & 0 \\ -9 & -5\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=$
$\frac{d x_{1}}{d t}=$
$\frac{d x_{2}}{d t}=$
$\frac{d x_{2}}{d x_{1}}=$

Slope 0:

Slope ∞ :

For $\left[\begin{array}{l}x_{1}^{\prime} \\ x_{2}^{\prime}\end{array}\right]=\left[\begin{array}{ll}2 & 0 \\ 9 & 5\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=$
$\frac{d x_{1}}{d t}=$
$\frac{d x_{2}}{d t}=$
$\frac{d x_{2}}{d x_{1}}=$

Slope 0:

Slope ∞ :

