Section 7.5 (where A has 2 real distinct nonzero eigenvalues): Solve $\mathbf{x}' = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix} \mathbf{x}$

Step 1: Find eigenvalues:

 $det(A - rI) = \begin{bmatrix} -2 - r & 0\\ 21 & 5 - r \end{bmatrix} =$

Step 2: For each eigenvalue, find one eigenvector. I.e., find one NONZERO solution to $(A - rI)\mathbf{v} = \mathbf{0}$

General solution: _____

Initial Value:
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$
, IVP solution:
For this IVP solution:
 $x_1(t) = _$ ______

Solve for x_1 in terms of x_2 :

Answer the following questions for $A = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix}$: The smaller eigenvalue of A is $r_1 = _$. An eigenvector corresponding to r_1 is $\mathbf{v} =$ The larger eigenvalue of A is $r_2 = _$. An eigenvector corresponding to r_2 is $\mathbf{w} =$ The general solution to $\mathbf{x}' = A\mathbf{x}$ is

For large **positive** values of t which is larger: $e^{r_1 t}$ or $e^{r_2 t}$?

For the following problems, consider the case when $c_1 \neq 0$ and $c_2 \neq 0$ where the general solution is $\mathbf{x} = c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{r_1 t} + c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{r_2 t}$,

For large **positive** values of t, which term dominates: $c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{r_1 t}$ or $c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{r_2 t}$?

Thus for large **positive** values of t, such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):

- * moves away from the origin.
- * moves toward the origin.
- * approaches the line y = mx with slope m =_____
- * approaches a line y = mx + b for $b \neq 0$ with slope m = ______. Note this case corresponds to where both $||c_1\mathbf{v}||e^{r_1t}$ and $||c_2\mathbf{w}||e^{r_2t}$ are large, but one is significantly larger than the other.

For large **negative** values of t which is larger: $e^{r_1 t}$ or $e^{r_2 t}$?

For large **negative** values of t, which term dominates: $c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{r_1 t}$ or $c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{r_2 t}$?

Thus for large **negative** values of t, such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):

- * moves away from the origin.
- * moves toward the origin.
- * approaches the line y = mx with slope m =_____
- * approaches a line y = mx + b for $b \neq 0$ with slope m =_____. Note this case corresponds to where both $||c_1\mathbf{v}||e^{r_1t}$ and $||c_2\mathbf{w}||e^{r_2t}$ are large, but one is significantly larger than the other.

Give that the solution to
$$\mathbf{x}' = \begin{bmatrix} -2 & 0\\ 21 & 5 \end{bmatrix} \mathbf{x}$$
 is $\mathbf{x} = c_1 \begin{bmatrix} 0\\ 1 \end{bmatrix} e^{5t} + c_2 \begin{bmatrix} -1\\ 3 \end{bmatrix} e^{-2t}$

Graph the solution to the IVP
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$
 in the

t, x_1 -plane

1	1	L 1		i 1	L 1	1	i i		L.
									Γ
_									L
_									L
	1							1	1

 x_1, x_2 -plane

Graph the solution to the IVP $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ in the

 t, x_1 -plane

1					i.	
						Γ
						Γ
						Γ
						Γ
						Γ
						Ī
						Γ
						Ī
						ſ
						Ī
						Γ
						t

 t, x_2 -plane

x_1 .	<i>x</i> ₂ -p	lane
$w_1,$	$w_2 p$	ianc

_							L
							I
_							Ī
_							I
							Ī
							I
							I
							I
_							ĺ
_							ĺ
_							Ī

The equilibrium solution for this system of equations is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$.

 $\frac{dx_2}{dx_1} = \underline{\qquad}$

Plot several direction vectors where the slope is 0 and where slope is vertical.

Section 7.5 (where A has 2 real distinct nonzero eigenvalues): Solve $\mathbf{x}' = \begin{bmatrix} -2 & 0 \\ -9 & -5 \end{bmatrix} \mathbf{x}$

Step 1: Find eigenvalues:

$$det(A - rI) = \begin{bmatrix} -2 - r & 0\\ -9 & -5 - r \end{bmatrix} =$$

Step 2: For each eigenvalue, find one eigenvector. I.e., find one NONZERO solution to $(A - rI)\mathbf{v} = \mathbf{0}$

General solution:

Initial Value:
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$
, IVP solution:
For this IVP solution:
 $x_1(t) = _$ ______

Solve for x_1 in terms of x_2 :

Answer the following questions for $A = \begin{bmatrix} -2 & 0 \\ -9 & -5 \end{bmatrix}$: The smaller eigenvalue of A is $r_1 = _$. An eigenvector corresponding to r_1 is $\mathbf{v} =$ The larger eigenvalue of A is $r_2 = _$. An eigenvector corresponding to r_2 is $\mathbf{w} =$ The general solution to $\mathbf{x}' = A\mathbf{x}$ is

For large **positive** values of t which is larger: $e^{r_1 t}$ or $e^{r_2 t}$?

For the following problems, consider the case when $c_1 \neq 0$ and $c_2 \neq 0$ where the general solution is $\mathbf{x} = c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{r_1 t} + c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{r_2 t}$,

For large **positive** values of t, which term dominates: $c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{r_1 t}$ or $c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{r_2 t}$?

Thus for large **positive** values of t, such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):

- * moves away from the origin.
- * moves toward the origin.
- * approaches the line y = mx with slope m =_____
- * approaches a line y = mx + b for $b \neq 0$ with slope m = ______. Note this case corresponds to where both $||c_1\mathbf{v}||e^{r_1t}$ and $||c_2\mathbf{w}||e^{r_2t}$ are large, but one is significantly larger than the other.

For large **negative** values of t which is larger: $e^{r_1 t}$ or $e^{r_2 t}$?

For large **negative** values of t, which term dominates: $c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{r_1 t}$ or $c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{r_2 t}$?

Thus for large **negative** values of t, such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):

- * moves away from the origin.
- * moves toward the origin.
- * approaches the line y = mx with slope m =_____
- * approaches a line y = mx + b for $b \neq 0$ with slope m =_____. Note this case corresponds to where both $||c_1\mathbf{v}||e^{r_1t}$ and $||c_2\mathbf{w}||e^{r_2t}$ are large, but one is significantly larger than the other.

Give that the solution to
$$\mathbf{x}' = \begin{bmatrix} -2 & 0 \\ -9 & -5 \end{bmatrix} \mathbf{x}$$
 is $\mathbf{x} = c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-5t} + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t}$

Graph the solution to the IVP
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$
 in the

t, x_1 -plane

1	1	L 1		i 1	L 1	1	i i		L.
									Γ
_									L
_									L
	1							1	1

 x_1, x_2 -plane

Graph the solution to the IVP $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ in the

 t, x_1 -plane

	1						L
							Γ
							Γ
							Γ
							Ī
							Γ
							T
							Ī
							Γ
							ſ
							Γ
							T
+	1						t

 t, x_2 -plane

	1					1	L
							l
							ſ
							Ī
							ĺ
							Ī
							ľ
							I
							ĺ
							Í
T							I
							ľ

The equilibrium solution for this system of equations is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$.

 $\frac{dx_2}{dx_1} = \underline{\qquad}$

Plot several direction vectors where the slope is 0 and where slope is vertical.

Graph several trajectories.

Section 7.5 (where A has 2 real distinct nonzero eigenvalues): Solve $\mathbf{x}' = \begin{bmatrix} 2 & 0 \\ 9 & 5 \end{bmatrix} \mathbf{x}$

Step 1: Find eigenvalues:

 $det(A - rI) = \begin{bmatrix} 2 - r & 0\\ 9 & 5 - r \end{bmatrix} =$

Step 2: For each eigenvalue, find one eigenvector. I.e., find one NONZERO solution to $(A - rI)\mathbf{v} = \mathbf{0}$

General solution:

Initial Value:
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$
, IVP solution:
For this IVP solution:
 $x_1(t) = _$ ______

Solve for x_1 in terms of x_2 :

Answer the following questions for $A = \begin{bmatrix} 2 & 0 \\ 9 & 5 \end{bmatrix}$: The smaller eigenvalue of A is $r_1 = _$. An eigenvector corresponding to r_1 is $\mathbf{v} =$ The larger eigenvalue of A is $r_2 = _$. An eigenvector corresponding to r_2 is $\mathbf{w} =$ The general solution to $\mathbf{x}' = A\mathbf{x}$ is

For large **positive** values of t which is larger: $e^{r_1 t}$ or $e^{r_2 t}$?

For the following problems, consider the case when $c_1 \neq 0$ and $c_2 \neq 0$ where the general solution is $\mathbf{x} = c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{r_1 t} + c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{r_2 t}$,

For large **positive** values of t, which term dominates: $c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{r_1 t}$ or $c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{r_2 t}$?

Thus for large **positive** values of t, such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):

- * moves away from the origin.
- * moves toward the origin.
- * approaches the line y = mx with slope m =_____
- * approaches a line y = mx + b for $b \neq 0$ with slope m = ______. Note this case corresponds to where both $||c_1\mathbf{v}||e^{r_1t}$ and $||c_2\mathbf{w}||e^{r_2t}$ are large, but one is significantly larger than the other.

For large **negative** values of t which is larger: $e^{r_1 t}$ or $e^{r_2 t}$?

For large **negative** values of t, which term dominates: $c_1 \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} e^{r_1 t}$ or $c_2 \begin{bmatrix} w_1 \\ w_2 \end{bmatrix} e^{r_2 t}$?

Thus for large **negative** values of t, such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):

- * moves away from the origin.
- * moves toward the origin.
- * approaches the line y = mx with slope m =_____
- * approaches a line y = mx + b for $b \neq 0$ with slope m = _____. Note this case corresponds to where both $||c_1\mathbf{v}||e^{r_1t}$ and $||c_2\mathbf{w}||e^{r_2t}$ are large, but one is significantly larger than the other.

Give that the solution to
$$\mathbf{x}' = \begin{bmatrix} 2 & 0 \\ 9 & 5 \end{bmatrix} \mathbf{x}$$
 is $\mathbf{x} = c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t} + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{2t}$

Graph the solution to the IVP
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$
 in the

t, x_1 -plane

1		i 1			L 1	1	i i	1	i i
									Γ
_									
_									L
_									
_									L
_									
									L

 t, x_2 -plane

)	2	L.		
			_	 _	_

x_1, x_2 -plane

Graph the solution to the IVP $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ in the

 t, x_1 -plane

					i.	
						Γ
						Γ
						Γ
						Γ
						Γ
						T
						Ī
						T
						Γ
						Ī
						Ī
-						t

t, x_2 -plane	ļ
-----------------	---

x_1 ,	x_2 -plane
$w_1,$	w2 prane

_							L
							l
							Γ
							Γ
							Γ
							Γ
							Γ
							Γ
							Γ
							Γ
							Γ
_							ſ
_							t

The equilibrium solution for this system of equations is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$.

 $\frac{dx_2}{dx_1} = \underline{\qquad}$

Plot several direction vectors where the slope is 0 and where slope is vertical.

Graph several trajectories.

Find the equilibrium solution(s) for $\mathbf{x}' = A\mathbf{x}$

Recall a solution is an equilibrium solution iff $\mathbf{x}(t) = \mathbf{C}$ iff $\mathbf{x}'(t) = 0$

Setting $\mathbf{x}' = 0$, implies $\mathbf{0} = A\mathbf{x}$.

Thus $\mathbf{x} = \mathbf{C}$ is an equilibrium solution iff it is a solution to $\mathbf{0} = A\mathbf{x}$.

<u>Case 1</u> (not emphasized/covered): det(A) = 0.

In this case, $A\mathbf{x} = \mathbf{0}$ has an infinite number of solutions. Note this case corresponds to the case when 0 is an eigenvalue of A since there are nonzero solutions to $A\mathbf{v} = 0\mathbf{v}$

<u>Case 2</u>: $det(A) \neq 0$.

Then $A\mathbf{x} = \mathbf{0}$ has a unique solution, $\mathbf{x} =$

Thus if $det(A) \neq 0$, $\mathbf{x} =$ is the only equilibrium solution of $\mathbf{x}' = A\mathbf{x}$

Slope fields:

* For complex eigenvalue case, one slope is needed.

* For real eigenvalue case, 0 and ∞ slopes can be helpful and can catch graphing errors, but your graph does **not** need to be that accurate.

For $\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} =$

 $\frac{dx_1}{dt} =$

 $\frac{dx_2}{dt} =$

 $\frac{dx_2}{dx_1} =$

Slope 0:

Slope ∞ :

For
$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ -9 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} =$$

 $\frac{dx_1}{dt} =$

 $\frac{dx_2}{dt} =$

 $\frac{dx_2}{dx_1} =$

Slope 0:

Slope ∞ :

For
$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 9 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} =$$

 $\frac{dx_1}{dt} =$

 $\frac{dx_2}{dt} =$

 $\frac{dx_2}{dx_1} =$

Slope 0:

Slope ∞ :