Example 1: Given that the solution to to
$$
\mathbf{x}' = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix} \mathbf{x}
$$
 is $\mathbf{x} = c_1 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t}$

Graph the solution to the IVP $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix}$ = [*−*1 3] in the

 t, x_1 -plane t, x_2 -plane x_1, x_2 -plane

Graph the solution to the IVP $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix}$ = $\overline{0}$ in the

 $\lceil 0$

]

The equilibrium solution for this system of equations is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ *x*2] $= \begin{bmatrix} 1 \end{bmatrix}$.

*dx*² $\frac{dx_2}{dx_1} =$

Plot several direction vectors where the slope is 0 and where slope is vertical. Graph several trajectories.

Semi-generic ex: Given that the solution to to $\mathbf{x}' = A\mathbf{x}$ is $\mathbf{x} = c_1$ [*−*1 3] $e^{r_1 t} + c_2$ $\lceil 0$ 1] $e^{r_2 t}$

IVP:
$$
\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}
$$
 implies $c_1 = 1, c_2 = 0$. Thus IVP soln: $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

Hence $x_1 = -e^{r_1 t} < 0$ and $x_2 = 3e^{r_1 t} > 0$

and $\frac{x_2}{x_1} = \frac{3e^{r_1t}}{-e^{r_1t}}$ $\frac{3e^{r_1t}}{-e^{r_1t}} = \frac{3}{-1}$ $\frac{3}{-1}$. Thus $x_2 = \frac{3}{-1}$ $\frac{3}{-1}x_1$.

https://www.geogebra.org/3d (t, -e*∧*(-2t), 3*e*∧*(-2t))

*x*2 3 x_1, x_2 -plane

] = [*−*1

] $e^{r_1 t}$

 $\frac{6e^{r_1t}}{-2e^{r_1t}} = \frac{3}{-}$

and $\frac{x_2}{x_1} = \frac{6e^{r_1 t}}{-2e^{r_1}}$

IVP: $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix}$

=

 \lceil 1 *−*3

Hence $x_1 = -2e^{r_1 t} < 0$ and $x_2 = 6e^{r_1 t} > 0$

https://www.geogebra.org/3d $(t, -2^*e \wedge (-2t), 6^*e \wedge (-2t))$

 $\frac{3}{-1}$. Thus $x_2 = \frac{3}{-1}$

 $\frac{3}{-1}x_1$.

*x*2

$$
P \text{ soln: } \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{r_1 t}
$$

$$
x_1, x_2 \text{-plane}
$$

$$
\text{implies } c_1 = -1, c_2 = 0. \qquad \text{Thus IVP soln: } \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = -\begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{r_1 t}
$$

Hence $x_1 = e^{r_1 t} > 0$ and $x_2 = -3e^{r_1 t} < 0$

and $\frac{x_2}{x_1} = \frac{3e^{r_1t}}{-e^{r_1t}}$ $\frac{3e^{r_1t}}{-e^{r_1t}} = \frac{-3}{1}$. Thus $x_2 = \frac{-3}{1}x_1$.

https://www.geogebra.org/3d $(t, e \wedge (-2t), -3^*e \wedge (-2t))$

Semi-generic ex: Given that the solution to to $\mathbf{x}' = A\mathbf{x}$ is $\mathbf{x} = c_1$ [*−*1 3] $e^{r_2 t} + c_2$ $\lceil 0$ 1] $e^{r_2 t}$

IVP:
$$
\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$
 implies $c_1 = 0, c_2 = 1$.

Hence $x_1 = 0$ and $x_2 = e^{r_2 t} > 0$

and
$$
\frac{x_2}{x_1} = \frac{1e^{r_2 t}}{0e^{r_2 t}} = \frac{1}{0}
$$
. Thus $x_2 = \frac{1}{0}x_1$.

https://www.geogebra.org/3d $(t, 0, e \wedge (5t))$

IVP:
$$
\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}
$$
 implies $c_1 = 0, c_2 = -1$. Thus IVP soln:

Hence $x_1 = 0$ and $x_2 = -e^{r_2 t} < 0$

and
$$
\frac{x_2}{x_1} = \frac{-1e^{r_2 t}}{0e^{r_2 t}} = \frac{-1}{0}
$$
. Thus $x_2 = \frac{-1}{0}x_1$.

https://www.geogebra.org/3d (t, 0, -e*∧*(5t))

Thus IVP soln:
$$
\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = - \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{r_2 t}
$$

IVP:
$$
\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$
 implies $c_1 = c_2 = 0$. Thus IVP soln:

Hence $x_1 = 0$ and $x_2 = 0$

https://www.geogebra.org/3d $(t, 0, 0)$

Thus IVP soln:
$$
\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

Answer the following questions for *A* = $\begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix}$: The smaller eigenvalue of *A* is $r_1 = \underline{\hspace{2cm}}$. An eigenvector corresponding to r_1 is $\mathbf{v} =$ The larger eigenvalue of *A* is $r_2 = \underline{\hspace{2cm}}$. An eigenvector corresponding to r_2 is $\mathbf{w} =$

The general solution to $\mathbf{x}' =$ $\begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix}$ **x** is **x** = *c*₁ [*−*1 3] $e^{-2t} + c_2$ $\lceil 0$ 1] e^{5t}

For large **positive** values of *t* which is larger: e^{-2t} or e^{5t} ?

For the following problems, consider the case when $c_1 \neq 0$ and $c_2 \neq 0$.

For large **positive** values of t , which term dominates: [*−*1

Thus for large **positive** values of *t*, such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):

3

]

 e^{-2t} or c_2

 $\lceil 0$ 1] e^{5t}

- * moves away from the origin.
- * moves toward the origin.
- * approaches the line $y = mx$ with slope $m =$
- * approaches a line $y = mx + b$ for $b \neq 0$ with slope $m =$. Note this case corresponds to where both $||c_1 \mathbf{v}||e^{r_1 t}$ and $||c_2 \mathbf{w}||e^{r_2 t}$ are large, but one is significantly larger than the other.

For large **negative** values of *t* which is larger: e^{-2t} or e^{5t} ?

For large **negative** values of t , which term dominates: [*−*1 3] e^{-2t} or c_2 $\lceil 0$ 1] e^{5t} ?

Thus for large **negative** values of *t*, such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):

- * moves away from the origin.
- * moves toward the origin.
- * approaches the line $y = mx$ with slope $m =$
- * approaches a line $y = mx + b$ for $b \neq 0$ with slope $m =$ ____________. Note this case corresponds to where both $||c_1 \mathbf{v}||e^{r_1 t}$ and $||c_2 \mathbf{w}||e^{r_2 t}$ are large, but one is significantly larger than the other.

Example 2: Given that the solution to
$$
\mathbf{x}' = \begin{bmatrix} -2 & 0 \\ -9 & -5 \end{bmatrix} \mathbf{x}
$$
 is $\mathbf{x} = c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-5t} + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t}$

Graph the solution to the IVP $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix}$ = [*−*1 3] in the

 t, x_1 -plane t, x_2 -plane x_1, x_2 -plane

 t, x_1 -plane t, x_2 -plane x_1, x_2 -plane

*dx*² $\frac{dx_2}{dx_1} =$

Plot several direction vectors where the slope is 0 and where slope is vertical. Graph several trajectories.

Answer the following questions for *A* = [*−*2 0 *−*9 *−*5] : The smaller eigenvalue of *A* is $r_1 = \underline{\hspace{2cm}}$. An eigenvector corresponding to r_1 is $\mathbf{v} =$ The larger eigenvalue of *A* is $r_2 = \underline{\hspace{2cm}}$. An eigenvector corresponding to r_2 is $\mathbf{w} =$

The general solution to $\mathbf{x}' =$ [*−*2 0 *−*9 *−*5] **x** is $\mathbf{x} = c_1$ $\lceil 0$ 1] $e^{-5t} + c_2$ [*−*1 3] *e −*2*t*

For large **positive** values of *t* which is larger: e^{-5t} or e^{-2t} ?

For the following problems, consider the case when $c_1 \neq 0$ and $c_2 \neq 0$ where the general solution is $\mathbf{x} = c_1$ $\lceil 0$ 1] $e^{-5t} + c_2$ [*−*1 3] *e −*2*t* ,

For large **positive** values of t , which term dominates: $\lceil 0$ 1] e^{-5t} or c_2 [*−*1 3] *e*^{-2*t*}?

Thus for large **positive** values of *t*, such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):

- * moves away from the origin.
- * moves toward the origin.
- * approaches the line $y = mx$ with slope $m =$
- * approaches a line $y = mx + b$ for $b \neq 0$ with slope $m =$. Note this case corresponds to where both $||c_1 \mathbf{v}||e^{r_1 t}$ and $||c_2 \mathbf{w}||e^{r_2 t}$ are large, but one is significantly larger than the other.

For large **negative** values of *t* which is larger: e^{-5t} or e^{-2t} ?

For large **negative** values of t , which term dominates: $\lceil 0$ 1] e^{-5t} or c_2 [*−*1 3] *e*^{-2*t*}?

Thus for large **negative** values of *t*, such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):

- * moves away from the origin.
- * moves toward the origin.
- * approaches the line $y = mx$ with slope $m =$
- * approaches a line $y = mx + b$ for $b \neq 0$ with slope $m =$ ___________. Note this case corresponds to where both $||c_1 \mathbf{v}||e^{r_1 t}$ and $||c_2 \mathbf{w}||e^{r_2 t}$ are large, but one is significantly larger than the other.

Example 3: Given that the solution to
$$
\mathbf{x}' = \begin{bmatrix} 2 & 0 \\ 9 & 5 \end{bmatrix} \mathbf{x}
$$
 is $\mathbf{x} = c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t} + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{2t}$

Graph the solution to the IVP $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix}$ = [*−*1 3] in the

 t, x_1 -plane t, x_2 -plane x_1, x_2 -plane

in the

 t, x_1 -plane t, x_2 -plane x_1, x_2 -plane

The equilibrium solution for this system of equations is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ *x*2]

= $\lceil 0$ $\overline{0}$]

Plot several direction vectors where the slope is 0 and where slope is vertical. Graph several trajectories.

Graph the solution to the IVP $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix}$

 $= \begin{bmatrix} 1 \end{bmatrix}$.

Answer the following questions for *A* = $\begin{bmatrix} 2 & 0 \\ 9 & 5 \end{bmatrix}$: The smaller eigenvalue of *A* is $r_1 = \underline{\hspace{2cm}}$. An eigenvector corresponding to r_1 is $\mathbf{v} =$ The larger eigenvalue of *A* is $r_2 = \underline{\hspace{2cm}}$. An eigenvector corresponding to r_2 is $\mathbf{w} =$ The general solution to $\mathbf{x} =$ $\begin{bmatrix} 2 & 0 \\ 9 & 5 \end{bmatrix}$ **x** is **x** = *c*₁ [*−*1 3] $e^{2t} + c_2$ $\lceil 0$ 1] e^{5t}

For large **positive** values of *t* which is larger: e^{2t} or e^{5t} ?

For the following problems, consider the case when $c_1 \neq 0$ and $c_2 \neq 0$ where the general solution is $\mathbf{x} = c_1$ [*−*1 3] $e^{2t} + c_2$ $\lceil 0$ 1] e^{5t}

For large **positive** values of t , which term dominates:

[*−*1 3] e^{2t} or c_2 $\lceil 0$ 1] e^{5t}

Thus for large **positive** values of *t*, such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):

- * moves away from the origin.
- * moves toward the origin.
- * approaches the line $y = mx$ with slope $m =$
- * approaches a line $y = mx + b$ for $b \neq 0$ with slope $m =$ ___________. Note this case corresponds to where both $||c_1 \mathbf{v}||e^{r_1 t}$ and $||c_2 \mathbf{w}||e^{r_2 t}$ are large, but one is significantly larger than the other.

For large **negative** values of *t* which is larger: e^{2t} or e^{5t} ?

For large **negative** values of *t*, which term dominates: *c*¹

$$
\begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{2t} \quad \text{or} \quad c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t}
$$

Thus for large **negative** values of *t*, such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):

- * moves away from the origin.
- * moves toward the origin.
- * approaches the line $y = mx$ with slope $m =$
- * approaches a line $y = mx + b$ for $b \neq 0$ with slope $m =$ ___________. Note this case corresponds to where both $||c_1 \mathbf{v}||e^{r_1 t}$ and $||c_2 \mathbf{w}||e^{r_2 t}$ are large, but one is significantly larger than the other.

Find the **equilibrium solution(s)** for $\mathbf{x}' = A\mathbf{x}$ *(Recall equilibrium solns are constant solns)* Recall a solution is an equilibrium solution if $\mathbf{x}(t) = \mathbf{C}$ iff $\mathbf{x}'(t) = 0$

Setting $\mathbf{x}' = 0$, implies $\mathbf{0} = A\mathbf{x}$.

Thus $\mathbf{x} = \mathbf{C}$ is an equilibrium solution iff it is a solution to $\mathbf{0} = A\mathbf{x}$.

Case 1 (not emphasized/covered): $det(A) = 0$.

In this case, A **x** = 0 has an infinite number of solutions. Note this case corresponds to the case when 0 is an eigenvalue of *A* since there are nonzero solutions to A **v** = 0**v**

Case 2: $det(A) \neq 0$.

Then A **x** = **0** has a unique solution, **x** =

Thus if $det(A) \neq 0$, $\mathbf{x} =$ is the only equilibrium solution of $\mathbf{x}' = A\mathbf{x}$

Slope fields:

* For complex eigenvalue case, one slope is needed.

* For real eigenvalue case, 0 and *∞* slopes can be helpful and can catch graphing errors, but your graph does **not** need to be that accurate.

For $\begin{bmatrix} x'_1 \\ y'_2 \end{bmatrix}$ x_2'] = $\begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$] =

*dx*¹ $\frac{d}{dt} =$

 dx_2 $\frac{d}{dt} =$

 dx_2 *dx*¹ =

Slope 0:

Slope *∞*:

For
$$
\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ -9 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} =
$$

 dx_1 $\frac{d}{dt} =$

 dx_2 $\frac{d}{dt} =$

 dx_2 dx_1 =

Slope 0:

Slope *∞*:

For
$$
\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 9 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} =
$$

 dx_1 $\frac{d}{dt} =$

 dx_2 $\frac{d}{dt} =$

*dx*² dx_1 =

Slope 0:

Slope *∞*: