

Graph the solution to the IVP $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$ in the

	ī	t,	x	1-	p	la	n	e				
- 1					L 1		1		L 1	1 1	1	

_							
							ſ
							ſ
							ſ
							ſ

 t, x_2 -plane

 x_1, x_2 -plane

Graph the solution to the IVP $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ in the

 t, x_1 -plane

								Γ
								Γ
								Γ
-								F
-								F
-								F
-								F
1								F
								F
+								F
+	-		-	-		-	-	H

 t, x_2 -plane

		1
x_1 .	x_2 -p	lane

_							ſ
_							
_							
							Γ
_							

The equilibrium solution for this system of equations is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$.

 $\frac{dx_2}{dx_1} = \underline{\qquad}$

Plot several direction vectors where the slope is 0 and where slope is vertical.

Semi-generic ex: Given that the solution to to $\mathbf{x}' = A\mathbf{x}$ is $\mathbf{x} = c_1 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{r_1 t} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{r_2 t}$

IVP:
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$
 implies $c_1 = 1, c_2 = 0.$

Hence $x_1 = -e^{r_1 t} < 0$ and $x_2 = 3e^{r_1 t} > 0$

and $\frac{x_2}{x_1} = \frac{3e^{r_1t}}{-e^{r_1t}} = \frac{3}{-1}$. Thus $x_2 = \frac{3}{-1}x_1$.

 $https://www.geogebra.org/3d \qquad (t, -e \land (-2t), \ 3^*e \land (-2t))$

IVP: $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -2 \\ 6 \end{bmatrix}$	implies $c_1 = 2, c_2 = 0.$
---	-----------------------------

Thus IVP soln:
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 2 \begin{bmatrix} -1 \\ 3 \end{bmatrix}$$

Hence
$$x_1 = -2e^{r_1 t} < 0$$
 and $x_2 = 6e^{r_1 t} > 0$

and
$$\frac{x_2}{x_1} = \frac{6e^{r_1t}}{-2e^{r_1t}} = \frac{3}{-1}$$
. Thus $x_2 = \frac{3}{-1}x_1$.

 $https://www.geogebra.org/3d \qquad (t, -2*e \land (-2t), 6*e \land (-2t))$

$$x_1, x_2$$
-plane

 $e^{r_1 t}$

Thus IVP soln:
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = - \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{r_1 t}$$

$$x_1, x_2$$
-plane

Hence
$$x_1 = e^{r_1 t} > 0$$
 and $x_2 = -3e^{r_1 t} < 0$

and
$$\frac{x_2}{x_1} = \frac{3e^{r_1t}}{-e^{r_1t}} = \frac{-3}{1}$$
. Thus $x_2 = \frac{-3}{1}x_1$.

IVP: $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ implies $c_1 = -1, c_2 = 0.$

 $https://www.geogebra.org/3d \qquad (t,\, e \wedge (\text{-}2t),\, \text{-}3^*e \wedge (\text{-}2t))$

Semi-generic ex: Given that the solution to to $\mathbf{x}' = A\mathbf{x}$ is $\mathbf{x} = c_1 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{r_2 t} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{r_2 t}$

IVP:
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 implies $c_1 = 0, c_2 = 1$.

Hence $x_1 = 0$ and $x_2 = e^{r_2 t} > 0$

and $\frac{x_2}{x_1} = \frac{1e^{r_2t}}{0e^{r_2t}} = \frac{1}{0}$. Thus $x_2 = \frac{1}{0}x_1$.

https://www.geogebra.org/3d $(t, 0, e \land (5t))$

IVP:	$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix}$	=	$\begin{bmatrix} 0\\ -1 \end{bmatrix}$] implies $c_1 = 0, c_2 = -1$
------	--	---	--	-------------------------------

Hence $x_1 = 0$ and $x_2 = -e^{r_2 t} < 0$

and
$$\frac{x_2}{x_1} = \frac{-1e^{r_2t}}{0e^{r_2t}} = \frac{-1}{0}$$
. Thus $x_2 = \frac{-1}{0}x_1$.

 $https://www.geogebra.org/3d \qquad (t, 0, -e \land (5t))$

Thus IVP soln:
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = - \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{r_2 t}$$

IVP:
$$\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
 implies $c_1 = c_2 = 0$.

Hence $x_1 = 0$ and $x_2 = 0$

 $https://www.geogebra.org/3d \qquad (t, 0, 0)$

Thus IVP soln:
$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Answer the following questions for $A = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix}$: The smaller eigenvalue of A is $r_1 = _$. An eigenvector corresponding to r_1 is $\mathbf{v} =$ The larger eigenvalue of A is $r_2 = _$. An eigenvector corresponding to r_2 is $\mathbf{w} =$ The general solution to $\mathbf{x}' = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix} \mathbf{x}$ is $\mathbf{x} = c_1 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t}$

For large **positive** values of t which is larger: e^{-2t} or e^{5t} ?

For the following problems, consider the case when $c_1 \neq 0$ and $c_2 \neq 0$.

For large **positive** values of t, which term dominates:

Thus for large **positive** values of t, such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):

 $c_1 \begin{bmatrix} -1\\ 3 \end{bmatrix} e^{-2t}$ or $c_2 \begin{bmatrix} 0\\ 1 \end{bmatrix} e^{5t}$

- * moves away from the origin.
- * moves toward the origin.
- * approaches the line y = mx with slope m =_____
- * approaches a line y = mx + b for $b \neq 0$ with slope m = _____. Note this case corresponds to where both $||c_1\mathbf{v}||e^{r_1t}$ and $||c_2\mathbf{w}||e^{r_2t}$ are large, but one is significantly larger than the other.

For large **negative** values of t which is larger: e^{-2t} or e^{5t} ?

For large **negative** values of t, which term dominates: $c_1 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t}$ or $c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t}$?

Thus for large **negative** values of t, such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):

- * moves away from the origin.
- * moves toward the origin.
- * approaches the line y = mx with slope m =_____
- * approaches a line y = mx + b for $b \neq 0$ with slope m = _____. Note this case corresponds to where both $||c_1\mathbf{v}||e^{r_1t}$ and $||c_2\mathbf{w}||e^{r_2t}$ are large, but one is significantly larger than the other.

Example 2: Given that the solution to
$$\mathbf{x}' = \begin{bmatrix} -2 & 0 \\ -9 & -5 \end{bmatrix} \mathbf{x}$$
 is $\mathbf{x} = c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-5t} + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t}$

Graph the solution to the IVP $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$ in the

						Γ
						Г

 t, x_1 -plane

Graph the solution to the IVP $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ in the

 t, x_1 -plane

						i i	1
							Γ
							Γ
							Γ
							Γ
_							
+	-						t
_							

 t, x_2 -plane

 x_1, x_2 -plane

_							
_							
_							
_							
_							
_							
							17
_							

The equilibrium solution for this system of equations is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$.

 $\frac{dx_2}{dx_1} = \underline{\qquad}$

Plot several direction vectors where the slope is 0 and where slope is vertical.

Graph several trajectories.

Answer the following questions for $A = \begin{bmatrix} -2 & 0 \\ -9 & -5 \end{bmatrix}$: The smaller eigenvalue of A is $r_1 = _$. An eigenvector corresponding to r_1 is $\mathbf{v} =$ The larger eigenvalue of A is $r_2 = _$. An eigenvector corresponding to r_2 is $\mathbf{w} =$ The general solution to $\mathbf{x}' = \begin{bmatrix} -2 & 0 \\ -9 & -5 \end{bmatrix} \mathbf{x}$ is $\mathbf{x} = c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-5t} + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t}$

For large **positive** values of t which is larger: e^{-5t} or e^{-2t} ?

For the following problems, consider the case when $c_1 \neq 0$ and $c_2 \neq 0$ where the general solution is $\mathbf{x} = c_1 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{-5t} + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{-2t}$,

For large **positive** values of t, which term dominates: $c_1 \begin{bmatrix} 0\\1 \end{bmatrix} e^{-5t}$ or $c_2 \begin{bmatrix} -1\\3 \end{bmatrix} e^{-2t}$?

Thus for large **positive** values of t, such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):

- * moves away from the origin.
- * moves toward the origin.
- * approaches the line y = mx with slope m =_____
- * approaches a line y = mx + b for $b \neq 0$ with slope m = _____. Note this case corresponds to where both $||c_1\mathbf{v}||e^{r_1t}$ and $||c_2\mathbf{w}||e^{r_2t}$ are large, but one is significantly larger than the other.

For large **negative** values of t which is larger: e^{-5t} or e^{-2t} ?

For large **negative** values of t, which term dominates: $c_1 \begin{bmatrix} 0\\1 \end{bmatrix} e^{-5t}$ or $c_2 \begin{bmatrix} -1\\3 \end{bmatrix} e^{-2t}$?

Thus for large **negative** values of t, such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):

- * moves away from the origin.
- * moves toward the origin.
- * approaches the line y = mx with slope m =_____
- * approaches a line y = mx + b for $b \neq 0$ with slope m =_____. Note this case corresponds to where both $||c_1\mathbf{v}||e^{r_1t}$ and $||c_2\mathbf{w}||e^{r_2t}$ are large, but one is significantly larger than the other.

Graph the solution to the IVP $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \end{bmatrix}$ in the

				_					
									ſ
									Γ
									-
_									+
_									H
_					_				F
-	-		-		-			-	h
-	_	-	-	-	-			-	F

 t, x_1 -plane

 x_1, x_2 -plane

Graph the solution to the IVP $\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ in the

 t, x_1 -plane

						1	
+							
-							
_	-	-		-			
_							

 t, x_2 -plane

x_1	,	x_2	-pl	lan	e

_							Γ
_							
_							
_							
_							
_							
_							
_	I –						17

The equilibrium solution for this system of equations is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$.

 $\frac{dx_2}{dx_1} = \underline{\qquad}$

Plot several direction vectors where the slope is 0 and where slope is vertical.

Graph several trajectories.

Answer the following questions for $A = \begin{bmatrix} 2 & 0 \\ 9 & 5 \end{bmatrix}$: The smaller eigenvalue of A is $r_1 =$ _____. An eigenvector corresponding to r_1 is $\mathbf{v} =$ The larger eigenvalue of A is $r_2 =$ _____. An eigenvector corresponding to r_2 is $\mathbf{w} =$ The general solution to $\mathbf{x} = \begin{bmatrix} 2 & 0 \\ 9 & 5 \end{bmatrix} \mathbf{x}$ is $\mathbf{x} = c_1 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t}$

For large **positive** values of t which is larger: e^{2t} or e^{5t} ?

For the following problems, consider the case when $c_1 \neq 0$ and $c_2 \neq 0$ where the general solution is $\mathbf{x} = c_1 \begin{bmatrix} -1 \\ 3 \end{bmatrix} e^{2t} + c_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} e^{5t}$

For large **positive** values of t, which term dominates:

 $c_1 \begin{bmatrix} -1\\ 3 \end{bmatrix} e^{2t}$ or $c_2 \begin{bmatrix} 0\\ 1 \end{bmatrix} e^{5t}$

Thus for large **positive** values of t, such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):

- * moves away from the origin.
- * moves toward the origin.
- * approaches the line y = mx with slope m =_____
- * approaches a line y = mx + b for $b \neq 0$ with slope m = _____. Note this case corresponds to where both $||c_1\mathbf{v}||e^{r_1t}$ and $||c_2\mathbf{w}||e^{r_2t}$ are large, but one is significantly larger than the other.

For large **negative** values of t which is larger: e^{2t} or e^{5t} ?

For large **negative** values of t, which term dominates:

 $c_1 \begin{bmatrix} -1\\ 3 \end{bmatrix} e^{2t}$ or $c_2 \begin{bmatrix} 0\\ 1 \end{bmatrix} e^{5t}$

Thus for large **negative** values of t, such trajectories (where $c_1c_2 \neq 0$) when projected into the x_1, x_2 plane exhibit the following behavior (select all that apply):

- * moves away from the origin.
- * moves toward the origin.
- * approaches the line y = mx with slope m =_____
- * approaches a line y = mx + b for $b \neq 0$ with slope m =_____. Note this case corresponds to where both $||c_1\mathbf{v}||e^{r_1t}$ and $||c_2\mathbf{w}||e^{r_2t}$ are large, but one is significantly larger than the other.

Find the equilibrium solution(s) for $\mathbf{x}' = A\mathbf{x}$ (Recall equilibrium solns are constant solns) Recall a solution is an equilibrium solution iff $\mathbf{x}(t) = \mathbf{C}$ iff $\mathbf{x}'(t) = 0$

Setting $\mathbf{x}' = 0$, implies $\mathbf{0} = A\mathbf{x}$.

Thus $\mathbf{x} = \mathbf{C}$ is an equilibrium solution iff it is a solution to $\mathbf{0} = A\mathbf{x}$.

<u>Case 1</u> (not emphasized/covered): det(A) = 0.

In this case, $A\mathbf{x} = \mathbf{0}$ has an infinite number of solutions. Note this case corresponds to the case when 0 is an eigenvalue of A since there are nonzero solutions to $A\mathbf{v} = 0\mathbf{v}$

<u>Case 2</u>: $det(A) \neq 0$.

Then $A\mathbf{x} = \mathbf{0}$ has a unique solution, $\mathbf{x} =$

Thus if $det(A) \neq 0$, $\mathbf{x} =$ is the only equilibrium solution of $\mathbf{x}' = A\mathbf{x}$

Slope fields:

* For complex eigenvalue case, one slope is needed.

* For real eigenvalue case, 0 and ∞ slopes can be helpful and can catch graphing errors, but your graph does **not** need to be that accurate.

For $\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 21 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} =$

 $\frac{dx_1}{dt} =$

 $\frac{dx_2}{dt} =$

 $\frac{dx_2}{dx_1} =$

Slope 0:

Slope ∞ :

For
$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ -9 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} =$$

 $\frac{dx_1}{dt} =$

 $\frac{dx_2}{dt} =$

 $\frac{dx_2}{dx_1} =$

Slope 0:

Slope ∞ :

For
$$\begin{bmatrix} x_1' \\ x_2' \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 9 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} =$$

 $\frac{dx_1}{dt} =$

 $\frac{dx_2}{dt} =$

 $\frac{dx_2}{dx_1} =$

Slope 0:

Slope ∞ :