Section 6.3
Example: $f(t)= \begin{cases}f_{1}, & \text { if } t<4 ; \\ f_{2}, & \text { if } 4 \leq t<5 ; \\ f_{3}, & \text { if } 5 \leq t<10 ; \\ f_{4}, & \text { if } t \geq 10 ;\end{cases}$
Hence $f(t)=f_{1}(t)+u_{4}(t)\left[f_{2}(t)-f_{1}(t)\right]+u_{5}(t)\left[f_{3}(t)-f_{2}(t)\right]+u_{10}(t)\left[f_{4}(t)-f_{3}(t)\right]$

Formula 13: $\mathcal{L}\left(u_{c}(t) f(t-c)\right)=e^{-c s} \mathcal{L}(f(t))$.
or equivalently

$$
\mathcal{L}\left(u_{c}(t) f(t-c+c)\right)=e^{-c s} \mathcal{L}(f(t+c)) .
$$

or equivalently

$$
\mathcal{L}\left(u_{c}(t) f(t)\right)=e^{-c s} \mathcal{L}(f(t+c)) .
$$

In other words, replacing $t-c$ with t is equivalent to replacing t with $t+c$

Formula 13: $\mathcal{L}\left(u_{c}(t) f(t-c)\right)=e^{-c s} \mathcal{L}(f(t))$.
Let $F(s)=\mathcal{L}(f(t)) . \quad$ Then $\mathcal{L}^{-1}(F(s))=\mathcal{L}^{-1}(\mathcal{L}(f(t)))=f(t)$.
Thus $\mathcal{L}^{-1}\left(e^{-c s} F(s)\right)=\mathcal{L}^{-1}\left(e^{-c s} \mathcal{L}(f(t))\right)=u_{c}(t) f(t-c)$ where $f(t)=\mathcal{L}^{-1}(F(s))$

