To calculate the inverse LaPlace transform, you will use the following algebra techniques:
partial fractions, completing the square, adding 0 , and multiplying by 1 .

1. Look at denominator
i.) Does your denominator equal one of the following? $s^{n}, s-a, s^{2} \pm a^{2}$, If so, use the appropriate formula.
ii.) Can you factor denominator over the reals? If so, factor and use partial fractions.
iii.) Do you need to complete the square? Example:

$$
\begin{aligned}
10 s^{2}+60 s+91 & =10\left(s^{2}+6 s\right)+91 \\
& =10\left(s^{2}+6+9-9\right)+91 \\
& =10\left(s^{2}+6+9\right)-90+91 \\
& =10(s+3)^{2}+1
\end{aligned}
$$

2. Look at the numerator
i.) Do you need $s-a$? Try adding 0 . For example to make $s+\frac{3}{2}$ appear in $5 s+21$:

$$
5 s+21=5\left(s+\frac{3}{2}\right)-\frac{15}{2}+21=5\left(s+\frac{3}{2}\right)+\frac{27}{2}
$$

ii) Do you need b ? Try multiplying by 1. For example, if you need $\sqrt{\frac{7}{4}}$, but you have $\frac{27}{2}$: $\quad \frac{27}{2}=\frac{27}{2} \sqrt{\frac{4}{7}} \sqrt{\frac{7}{4}}$

