\magnification 1800 \parskip 10pt \parindent = 0pt \vsize 10.3truein \hsize 7.3truein \voffset -0.5truein \hoffset -0.5truein \def\So{\Sigma_{n = 0}^\infty} \def\S{\Sigma_{n = 1}^\infty} \def\St{\Sigma_{n = 2}^\infty} \def\so{\Sigma_{n = 0}^k} \def\s{\Sigma_{n = 1}^k} \def\hr{\vskip 5pt \hrule \vskip -0pt} \def\hb{\hfil \break} \def\v{\vskip 5pt} \def\u{\vskip -5pt} {\bf 5.5 Series Solutions Near a Regular Singular Point, Part I } Theorem 5.3.1: If $p(x)$ and$q(x)$ are analytic at $x_0$ (i.e., $x_0$ is an ordinary point of the ODE \hb $y'' + p(x)y' + q(x) y = 0$), then the general solution to this ODE is \vskip -6pt \centerline{$y = \So a_n(x - x_0)^n = a_0\phi_0(x) + a_1\phi_1(x)$} \vskip -7pt where $\phi_i$ are power series solutions that are analytic at $x_0$. The solutions $\phi_0, \phi_1$ form a fundamental set of solutions. The radius of convergence for each of these series solutions is at least as large as the minimum radii of convergence of the series for ${Q \over P}$ and ${R \over P}$. If you prefer a power series expansion about 0, use $u$-substitution: let $u = x - x_0$. Then $p(u + x_0)$ and $q(u + x_0)$ are analytic at $0$ (Semi-failed) attempt to transform 5.5 problem into 5.4 problem: 5.5: $y'' + p(x) y' + q(x)y = 0$ $x^2y'' + x^2p(x) y' + x^2q(x)y = 0$ $x^2y'' + x[xp(x)] y' + [x^2q(x)]y = 0$ where $xp(x)$ and $x^2q(x)$ are functions of $x$. 5.4: $x^2 y'' + \alpha x y' + \beta y = 0$ where $\alpha, \beta$ are constants. Combine 5.3/5.4 methods. Defn: $x_0$ is a regular singular value if $x_0$ is a singular value and $xp(x)$ and $x^2q(x)$ are analytic at $x_0$. A singular value which is not regular is called irregular. Examples: $y'' + {y' \over x} + {y \over x^2} = 0$, regular singular value: $x = 0$. $y'' + {y' \over x^2} + {y \over x} = 0$, irregular singular value: $x = 0$. $y'' + {y'} + {y \over x^3} = 0$, irregular singular value: $x = 0$. If $p(x)$ and $q(x)$ are rational functions, then $xp(x)$ and $x^2q(x)$ are analytic iff $lim_{x \rightarrow 0} xp(x)$ and iff $lim_{x \rightarrow 0} x^2q(x)$ are finite. (i.e., after reducing fractions, $x$ is not in the denominator. Ex: $p(x) = {1 \over x}$ implies $xp(x) = {x \over x} = 1$ Ex: $p(x) = {1 \over x^2}$ implies $xp(x) = {x \over x^2} = {1 \over x}$ If $x_0 = 0$ is a regular singular value of the linear homogeneous DE, $x^2y'' + x[xp(x)] y' + x^2 q(x)y = 0$ (*) Suppose $y = x^r \So a_nx^n = \So a_n x^{n + r}$ is a solution to (*). $ y' = \S (n+r)a_n x^{n + r-1}$ and $ y'' = = \St (n+r)(n+r - 1) a_n x^{n + r-2}$ $ x^2\St (n+r)(n+r - 1) a_n x^{n + r-2} + x[xp(x)] \S (n+r)a_n x^{n + r-1} + [x^2q(x)]y \So a_n x^{n + r}$ = 0$ $ \St (n+r)(n+r - 1) a_n x^{n + r} + [xp(x)] \S (n+r)a_n x^{n + r} + [x^2q(x)]y \So a_n x^{n + r}$ = 0$ $ \St (n+r)(n+r - 1) a_n x^{n + r} + xp(x)(1 + r)a_1x^{1 + r} + [xp(x)] \St (n+r)a_n x^{n + r} + [x^2q(x)]a_0x^r + [x^2q(x)]a_1x^{r+1} + [x^2q(x)] \St a_n x^{n + r} = 0$ $ [x^2q(x)]a_0x^r +(xp(x)(1 + r)a_1 + [x^2q(x)]a_1)x^{r+1} + \St [(n+r)(n+r - 1) a_n x^{n + r} + [xp(x)] (n+r)a_n x^{n + r} + [x^2q(x)] a_n x^{n + r} = 0$ \end then