5.5 Series Solutions Near a Regular Singular Point, Part I

Theorem 5.3.1: If p(x) and q(x) are analytic at x_0 (i.e., x_0 is an ordinary point of the ODE y'' + p(x)y' + q(x)y = 0), then the general solution to this ODE is

$$y = \sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 \phi_0(x) + a_1 \phi_1(x)$$

where ϕ_i are power series solutions that are analytic at x_0 . The solutions ϕ_0, ϕ_1 form a fundamental set of solutions. The radius of convergence for each of these series solutions is at least as large as the minimum radii of convergence of the series for $\frac{Q}{P}$ and $\frac{R}{P}$.

If you prefer a power series expansion about 0, use *u*-substitution: let $u = x - x_0$. Then $p(u + x_0)$ and $q(u + x_0)$ are analytic at 0

(Semi-failed) attempt to transform 5.5 problem into 5.4 problem:

5.5:
$$y'' + p(x)y' + q(x)y = 0$$

 $x^{2}y'' + x^{2}p(x)y' + x^{2}q(x)y = 0$

 $x^2y^{\prime\prime}+x[xp(x)]y^\prime+[x^2q(x)]y=0$ where xp(x) and $x^2q(x)$ are functions of x.

5.4: $x^2y'' + \alpha xy' + \beta y = 0$ where α, β are constants.

Combine 5.3/5.4 methods.

Defn: x_0 is a regular singular value if x_0 is a singular value and xp(x) and $x^2q(x)$ are analytic at x_0 . A singular value which is not regular is called *irregular*.

Examples:

$$y'' + \frac{y'}{x} + \frac{y}{x^2} = 0$$
, regular singular value: $x = 0$.
 $y'' + \frac{y'}{x^2} + \frac{y}{x} = 0$, irregular singular value: $x = 0$.
 $y'' + y' + \frac{y}{x^3} = 0$, irregular singular value: $x = 0$.

If p(x) and q(x) are rational functions, then xp(x) and $x^2q(x)$ are analytic iff $\lim_{x\to 0} xp(x)$ and iff $\lim_{x\to 0} x^2q(x)$ are finite. (i.e., after reducing fractions, x is not in the denominator.

Ex:
$$p(x) = \frac{1}{x}$$
 implies $xp(x) = \frac{x}{x} = 1$
Ex: $p(x) = \frac{1}{x^2}$ implies $xp(x) = \frac{x}{x^2} = \frac{1}{x}$

If $x_0 = 0$ is a regular singular value of the linear homogeneous DE, $x^2y'' + x[xp(x)]y' + x^2q(x)y = 0$ (*), then $xp(x) = \sum_{n=0}^{\infty} p_n x^n$ and $x^2q(x) = \sum_{n=0}^{\infty} q_n x^n$ for constants p_n, q_n .

If
$$y = x^r \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_n x^{n+r}$$
 is a solution to (*) where $r \neq 0$.
 $y' = \sum_{n=0}^{\infty} (n+r)a_n x^{n+r-1}$ and $y'' = \sum_{n=0}^{\infty} (n+r)(n+r-1)a_n x^{n+r-2}$

$$x^{2} \Sigma_{n=0}^{\infty} (n+r)(n+r-1)a_{n} x^{n+r-2} + x[xp(x)] \Sigma_{n=0}^{\infty} (n+r)a_{n} x^{n+r-1} + [x^{2}q(x)] \Sigma_{n=0}^{\infty} a_{n} x^{n+r}$$

$$\Sigma_{n=0}^{\infty} (n+r)(n+r-1)a_n x^{n+r} + [xp(x)] \Sigma_{n=0}^{\infty} (n+r)a_n x^{n+r} + [x^2q(x)] \Sigma_{n=0}^{\infty} a_n x^{n+r}$$

$$\Sigma_{n=0}^{\infty} (n+r)(n+r-1)a_n x^{n+r} + (\Sigma_{n=0}^{\infty} p_n x^n) (\Sigma_{n=0}^{\infty} (n+r)a_n x^{n+r}) + (\Sigma_{n=0}^{\infty} q_n x^n) (\Sigma_{n=0}^{\infty} a_n x^{n+r})$$

Thus the coefficient of x^r is $r(r-1)a_0 + p_0ra_0 + q_0a_0 = 0$

We can take $a_0 \neq 0$. Thus $r(r-1) + p_0 r + q_0 = 0$

Thus we can solve for r using the quadratic formula.

Case 1: $r_1 > r_2$ both real and $r_1 - r_2$ is not an integer. Case 2: $r_1 > r_2$ both real and $r_1 - r_2 = p$, p an integer. Case 3: one repeated root. Case 4: two complex roots.