Section 5.4 continued
Solve $x^{2} y^{\prime \prime}-2 x y^{\prime}=0\left({ }^{*}\right)$.
We could solve by letting $v=y^{\prime}$, but we will instead use 5.4 methods
Note x is an ordinary point iff $x \neq 0 \quad\left(y^{\prime \prime}-\frac{2}{x} y^{\prime}=0\right.$. $)$ $x=0$ is a singular point.

Note $x^{2} x^{r-2} r(r-1)-2 x x^{r-1} r=0$ implies $r^{2}-r-2 r=0$ and recall $y=(-x)^{r}$ gives same equation for r as $y=x^{r}$.

Thus $y=|x|^{r}$ implies $r^{2}+(\alpha-1) r+\beta=r^{2}-3 r+0=r(r-3)=0$
Thus $r=0,3$. Thus $y=|x|^{0}=1$ and $y=|x|^{3}$ are solutions to $\left(^{*}\right)$
Since $\left({ }^{*}\right)$ is a linear equation, the general solution is $y=c_{1}+c_{2}|x|^{3}$. Note an equivalent general solution is $y=k_{1}+k_{2} x^{3}$.

Both forms are valid for all x.
When is a unique solution to the following initial value problem guaranteed?

$$
\begin{gathered}
x^{2} y^{\prime \prime}-2 x y^{\prime}=0, \quad y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{1}\left({ }^{* *}\right) \\
y^{\prime \prime}-\frac{2}{x} y^{\prime}=0, \quad y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{1}
\end{gathered}
$$

Since $\frac{2}{x}$ and the zero constant function are continuous on

$$
(-\infty, 0) \cup(0, \infty)
$$

$\left({ }^{* *}\right)$ has a unique solution for $t_{0}<0$ and this solution exists on

$$
(-\infty, 0)
$$

$(* *)$ has a unique solution for $t_{0}>0$ and this solution exists on
$(0, \infty)$.
There are an infinite number of solutions for $y(0)=a, y^{\prime}(0)=0$.

How is x^{r} defined:

If n is a positive integer: $x^{n}=x \cdot x \cdot \ldots \cdot x$
If m is a positive integer: If $f(x)=x^{m}$, then $f^{-1}(x)=x^{\frac{1}{m}}$ and $x^{\frac{n}{m}}=\left(x^{n}\right)^{\frac{1}{m}}$

Let $r \geq 0$. Let r_{n} be any sequence consisting of positive rational numbers such that $\lim _{n \rightarrow \infty} r_{n}=r$. Then

$$
x^{r}=\lim _{n \rightarrow \infty} x^{r_{n}} .
$$

See more advanced class for why the above is well-defined.
If $r<0$, then $x^{r}=x^{-r}$.
If x is a real number, when is x^{r} a real number?
$x^{n}=x \cdot x \cdot \ldots \cdot x$ is a real number when n is a positive integer.
If $f(x)=x^{n}$, then the image of $f= \begin{cases}\text { real numbers } & n \text { odd } \\ {[0, \infty)} & n \text { even }\end{cases}$
Thus if $f^{-1}(x)=x^{\frac{1}{n}}$ is real-valued, then the domain of f^{-1} is $\begin{cases}\text { real numbers } & n \text { odd } \\ {[0, \infty)} & n \text { even }\end{cases}$

In complex analysis, $\left(\frac{1+i \sqrt{3}}{2}\right)^{3}=-1,(-1)^{3}=-1,\left(\frac{1-i \sqrt{3}}{2}\right)^{3}=-1$
Recall $\left(e^{\frac{i \pi}{3}}\right)^{3}=\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)^{3}=-1$
Complex numbers are also roots of unity:

$$
\left(e^{\frac{2 i \pi}{3}}\right)^{3}=1 \quad\left(e^{\frac{-2 i \pi}{3}}\right)^{3}=1, \quad(1)^{3}=1
$$

Solve $x^{2} y^{\prime \prime}+\alpha x y^{\prime}+\beta y=0 . \quad$ Let $y=x^{r}$,
$y^{\prime}=r x^{r-1}, y^{\prime \prime}=r(r-1) x^{r-2}$ (case when $y=(-x)^{r}$ is similar).
$x^{2} x^{r-2} r(r-1)+\alpha x x^{r-1} r+\beta x^{r}=0$
$x^{r}\left[r^{2}-r+\alpha r+\beta\right]=0$ for all x implies $r^{2}+(\alpha-1) r+\beta=0$
Thus x^{r} is a solution iff $r=\frac{-(\alpha-1) \pm \sqrt{(\alpha-1)^{2}-4 \beta}}{2}$
Case 1: Two real roots, r_{1}, r_{2}.
General solution is $y=c_{1}|x|^{r_{1}}+c_{2}|x|^{r_{2}}$
Case 2: Two complex roots, $r_{i}=\lambda \pm i \mu$:
Convert solution to form without complex numbers.
Note $|x|^{ \pm i \mu}=e^{\ln \left(|x|^{ \pm i \mu}\right)}=e^{(\pm i \mu) \ln |x|}=e^{i(\pm \mu \ln |x|)}$

$$
\begin{array}{r}
=\cos (\pm \mu l n|x|)+i \sin (\pm \mu \ln |x|) \\
\quad=\cos (\mu \ln |x|) \pm i \sin (\mu \ln |x|)
\end{array}
$$

General solution is $y=c_{1}|x|^{r_{1}}+c_{2}|x|^{r_{2}}=c_{1}|x|^{\lambda+i \mu}+c_{2}|x|^{\lambda-i \mu}$
$=|x|^{\lambda}\left(c_{1}|x|^{i \mu}+c_{2}|x|^{-i \mu}\right)$
$=|x|^{\lambda}\left(c_{1}[\cos (\mu \ln |x|)+i \sin (\mu \ln |x|)]+c_{2}[\cos (\mu \ln |x|)-i \sin (\mu \ln |x|)]\right)$
$=|x|^{\lambda}\left(\left[c_{1}+c_{2}\right] \cos (\mu \ln |x|)+i\left[c_{1}-c_{2}\right] \sin (\mu \ln |x|)\right)$
$=|x|^{\lambda}\left(k_{1} \cos (\mu \ln |x|)+k_{2} \sin (\mu \ln |x|)\right)$
$=k_{1}|x|^{\lambda} \cos (\mu l n|x|)+k_{2}|x|^{\lambda} \sin (\mu l n|x|)$
Case 3: one repeated root, $r_{1}=\frac{-(\alpha-1)}{2}$. (i.e., $\sqrt{(\alpha-1)^{2}-4 \beta}=0$): Thus $|x|^{r_{1}}$ is a solution. Find 2nd solution.

Method 1. Reduction of order: Suppose $y=u(x)|x|^{r_{1}}$ is a solution to $x^{2} y^{\prime \prime}+\alpha x y^{\prime}+\beta y=0$. Plug in and determine $u(x)$

Method 2: Let $L(y)=x^{2} y^{\prime \prime}+\alpha x y^{\prime}+\beta y$ where $y^{\prime}=\frac{d y}{d x}$.
$L\left(|x|^{r}\right)=|x|^{r}\left(r-r_{1}\right)^{2}$
$\frac{\partial}{\partial r}\left[L\left(|x|^{r}\right)\right]=\frac{\partial}{\partial r}\left[|x|^{r}\left(r-r_{1}\right)^{2}\right]=\left(|x|^{r}\right)^{\prime}\left(r-r_{1}\right)^{2}+2|x|^{r}\left(r-r_{1}\right)=0$
if $r=r_{1}$.
Suppose x is constant with respect to r and all the partial derivatives are continuous. Then

$$
\begin{aligned}
\frac{\partial}{\partial r}[L(y)]=\frac{\partial}{\partial r}\left[x^{2} y^{\prime \prime}+\alpha x y^{\prime}+\beta y\right]= & x^{2} \frac{\partial y^{\prime \prime}}{\partial r}+\alpha x \frac{\partial y^{\prime}}{\partial r}+\beta \frac{\partial y}{\partial r} \\
= & x^{2} \frac{\partial}{\partial r}\left[\frac{\partial^{2} y}{\partial x^{2}}\right]+\alpha x \frac{\partial}{\partial r}\left[\frac{\partial y}{\partial x}\right]+\beta \frac{\partial y}{\partial r} \\
= & x^{2} \frac{\partial^{2}}{\partial x^{2}}\left[\frac{\partial y}{\partial r}\right]+\alpha x \frac{\partial}{\partial x}\left[\frac{\partial y}{\partial r}\right]+\beta \frac{\partial y}{\partial r} \\
& =L\left(\frac{\partial y}{\partial r}\right) \text { for all } r
\end{aligned}
$$

$L\left(\frac{\partial|x|^{r}}{\partial r}\right)=\frac{\partial}{\partial r}\left[L\left(|x|^{r}\right)\right]=0$ for $r=r_{1}$.
$\frac{\partial|x|^{r}}{\partial r}=\frac{\partial e^{l n|x|^{r}}}{\partial r} \frac{\partial e^{r l n|x|}}{\partial r}=\left(e^{r l n|x|}\right) \ln |x|=|x|^{r} l n|x|$
Thus $|x|^{r_{1}} \ln |x|$ is a solution.
Thus general solution is $y=c_{1}|x|^{r_{1}}+c_{2}|x|^{r_{1}} \ln |x|$
since by the Wronskian, $|x|^{r_{1}}$ and $|x|^{r_{1}} l n|x|$ are linearly independent. Suppose $x>0$ and $r_{1} \neq 0$.

$$
\begin{aligned}
& \left|\begin{array}{cc}
x^{r_{1}} & x^{r_{1}} \ln |x| \\
r_{1} x^{r_{1}-1} & r_{1} x^{r_{1}-1} \ln |x|+x^{r_{1}-1}
\end{array}\right| \\
& \quad=x^{r_{1}}\left(r_{1} x^{r_{1}-1} \ln |x|+x^{r_{1}-1}\right)-x^{r_{1}} \ln |x| r_{1} x^{r_{1}-1} \\
& \\
& =x^{2 r_{1}-1}\left[r_{1} \ln |x|+1-\ln |x| r_{1}\right]=x^{2 r_{1}-1} \neq 0 \text { for } x \neq 0
\end{aligned}
$$

Other cases for Wronskian are similar.

