Solve " — 4y’ + 4y =0

rt

Using quick 3.4 method. Guess y = €' and plug into equation to find
r? —dr + 4 = 0. Thus (r —2)? = 0. Hence r = 2. Therefore general solution
isy= 162 4 coze?®.

Use LONG 5.2 method (normally use this method only when other shorter
methods don’t exist) to find solution for values near zg = 0.

Suppose the solution y = f(x) is analytic at 29 = 0.
That is f(z) = Z‘%Ozof(;—)!(m(x — 0)™ for z near xy = 0.
Thus there are constants a,, = % such that,

f(z) = X3lpan(z — 0)" = X0 ganz™

Find a recursive formula for the constants of the series solution to
— 4y + 4y =0 near g =0

We will determine these constants a,, by plugging f into the ODE.

F(@) = 532 gana”, f/(2) = T3 jauna™ Y, f1(2) = T2 pann(n — 12,
Y2 apn(n —1)a""2 — 4% ja,na™ ! + 43 a2 = 0.

Y0 yant2(n+2)(n+ 1)z — 4352 jan1(n + 1)z™ + 4X2° ja,z™ = 0.
Y0 olant2(n+2)(n+ 1) — dap41(n + 1) + 4a, 2™ = 0.
an+o(n+2)(n+1) —4dapy1(n+1) + 4a, = 0.

_ 4ant1(n+l)—4a,
On+2 = (n+2)(n+1)

Hence the recursive formula (if know previous terms, can determine later
terms) is

an 2 =4 ()

(n+1l)anii—an

Given the recursive formula, a, 12 =4 ( CEICES))

) , determine a,,.

Determine formula for a; by noticing patterns. Note: It is easier to notice
patterns if you do NOT simplify too much.

Find the first 6 terms of the series solution

n=0: as :4(5(‘5)_(?”
n=1: az=4 (—2a2—a1) =4 <—(2)(4)(a<12>5?)“1> —4 (74(‘“‘“0)‘“1)

(3)(2) (3)(2) (3)(2)
—4 (3(11 4a0)

n = 2: as, = 4 (36143)z3a)2) — 4 (3(4)(%()3;4((1123{10)) = 4 (3(M%_(%)>I
) < (o) (5

3

(4)a47a3) —4 ((4)4(%,1;3(10)_4(3(11;4,10))

n=3 a =4 "TGm BIe)

.y <4(2a13!3a0 )5(3a13!4a0)> _ (4(2(11 3ap)—(3a1— 4ao)) — 4 (5@1—8(10)

5(31) 5(3!)

Il
e
— 7

f(m) ~ a0+a1m+4 (a12—1a0) 1‘2+4 (Bal?j!élao) 3+4 (2(11( ;’)ao) T +4 (5&1( 8)a0) 1,5'

Recall f(z) = agpo(x) + a1é1(x) for linearly independent solutions ¢ and
¢1 to equation y” — 4y’ + 4y = 0.

Find the first 5 terms in each of the 2 solns y = ¢g(z) and y = ¢1(x)
do~1+4(5) 22 +4(51) " +4<(3,))x +4<5(3,))x5

b1~ a(d)at 14 (d)ad 14 () at 14 () o

n=0: a ((2)(1)) 2(26”2&)

n=1: Q3::4(3al3ﬂ) :22(3a1;4a0)
n=2: =4 (M) =16 (42(11 3‘10) =8 (_4a156¢10) — 93 (4aliﬁao)
n=3 a5 =4 (%) — 16 (%) — 94 (5a1;!8a0)

. 2~ (ka1 —2(k—1
Hence it appears aj = (kay - (k—1)ao)



Prove that if a,, 4o = 4 <4(n+1)a”+1_a"), then a;, = 2k71(ka1;!2(k_1)a0)

(n+2) (n+1)

k—1
Need to prove a; = 24 k?(k Dao) for k> 0

Given: an4o =4 (%%) for n > 2,

Proof by induction on k.

201 (0(a1)~2(~)a) _
0!

Suppose k = 0. Then 3(2a0) = ag

-la 1—1
Suppose k = 1. Then 2— <a1>l'2< Jao) _ o
k—1 _ _
Suppose ay, = E k|2(k Dao) for = n,m+1
n—1 _ _ n B
Thus a, = > (mln?(n D) and a, 14 = W
Claim: a _ 2" ((n+2)a; —2(n+1)ao)
D Op42 = CEo
1 2711(('n+1)a1*2na0) _ 2n,—1(na172(n71)a0)
a =4 (t)ant1—an —4 ot )[ (n+1)! ] —
n+2 = (n+2)(n+1) = CERNCESY
= (n+2)(n+1)

n— 2((n+1)a1—2nag)]—[nai1—2(n—1)a
= 4(2)"! ([ (n+1) ln!(ng)(rgﬂl) (n=1) 0])

— on+l <2(n+1)a174na07na1+2(n*1)a0) — gn+l ((n+2)a172(n+1)a0))

n!(n+2)(n+1) (n+2)!
Thus f(z) = £50 , 2 (ra1=2(n=Dac) n
n—1
= alEfLO:OZ n,(")x —anZn 0
= 0,0(72)200_0

if these two series converge.
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(n— 1)2" L

For what values of z does X722, " converge

bnt1

Ratio test: Suppose we have the series b,

Then, if L < 1, the series is absolutely convergent (and hence convergent).
If L > 1, the series is divergent.

If L =1, the series may be divergent, conditionally convergent, or absolutely
convergent.
n2™ n+1

(xS
(n—p2n- Lon
nt

2nx

llmn%oo = llmn‘}m ) (n+1)(n-1)

= 20 limsoe | Grerfiry | = 0

Hence the series converges for all x

gn—

For what values of z does ¥72 (n 1),30 converge

n
%Tmn+1
on—1
(CESY1k

Limp o0 = iMoo | 22| = 22 limp—00 | 2| =0

Hence the series converges for all

Thus the solution is

n—1 n —
(@) = ag(=2) 352 T=5Mam + oy 552 Eoypa”

and the domain is all real numbers.

Le., the general solution is f(x) = agdo(x) + a1¢1(x)

277.71

n—1
where ¢o(z) = (—2)X52 wa and ¢1(x) = X0, G—y2”

Note we could have replaced the constant ag with —2ag, but the a;’s have

meaning: a, = % Thus our initial values are ag = f(0) and a; = f/(0)



In general, to determine if there is a unique solution to the IVP, 3"
4y =0, y(x0) = yo, ¥'(x0) = y1, we solve for unknowns ag and a;.

_4y’_|_

y(z0) = aodo(wo) + a1d1(wo)
Y (z0) = aodp (o) + a1¢7 (o)

Note that the above system of two equations has a unique solution for the
$o(zo) ¢1(I0)) £0
Po(z0) @1 (z0)

In other words the IVP has a unique solution iff the Wronskian of ¢y and
¢1 evaluated at x( is not zero. Recall that by theorem , this also implies
that ¢g and ¢, are linearly independent and hence the general solution is
y = aoPo(z) + a1¢1(z) by theorem.

two unknowns ag and a; if and only if det (

Show that ¢o(z) = (~2)82, 2 —G=um and ¢(2) = S, Eopa”

are linearly independent by calculating the Wronskian of these
two functions evaluated at zo = 0.

W (6, 60) (x) = (¢%<x)

1

d(x) dh(x) (~2)To G Do e
—9)90-1(_

wonea0) = (TP D)~ (]) =120

Hence ¢o(z) = (—2)X52, wx and ¢1(z) = 22 ﬁx are lin-

early independent

When possible identify the functions giving the series solutions. Recall that
(n)
by Taylor’s theorem and the ratio test, e?* = E;L'OZOfT!(‘T)x" = 5% 2

for all z.

fla) = a5, n2an

" n— D
Tl

— 20402%0

_ n2" ! n2" 1 on—!
=a1X%, 3 ™ —2a025%, 3 ™ 4+ 2a0252 "

27171 2n
= (a1 — 2a0) X5 o 52" + agXpL g Sr "

" l(n— n 00 " n
d)g(.%’)) - ((—2)2?_()%% En 1ﬁm

|

on— 1

= (a1 — 2a0)TX (n T S Vi Zgn
= (a1 — 2a0)x2}°° 0=r "an o ap22 n, "~ gn
621: +a0€21‘

= (a1 — 2a9)x

Note we have recovered the solution we found using the 3.4 method.

Note a power series solutions exists in a neighborhood of zg when the solution
is analytic at zo. Le, the solution is of the form y = X2 ja,(z — xo)™ where
this series has a nonzero radius of convergence about .

When do we know an analytic solution exists? I.e, when is this method
guaranteed to work?

Special case: P(z)y” + Q(z)y’ + R(x)y =0
Then y"(z) = —%y — &y

Definition: The point xg is an ordinary point of the ODE,

P(z)y" + Qz)y" + R(x)y =0
if % and % are analytic at zq.

Theorem 5.3.1: If z is an ordinary point of the ODE P(z)y” + Q(z)y’ +
R(z)y = 0, then the general solution to this ODE is

y =35l an(x — 20)" = aodo(x) + a1¢1(x)
where ¢; are power series solutions that are analytic at x3. The solutions
¢, p1 form a fundamental set of solutions. The radius of convergence for
each of these series solutions is at least as large as the minimum radii of
convergence of the series for % and %.

Theorem: If P and @ are polynomial functions, then y = Q(z)/P(x) is
analytic at z¢ if and only if P(zg) # 0. Moreover if @/P is reduced, the
radius of convergence of Q(z)/P(z) = min{||zo — z|| | z € C,P(z) = 0}
where ||zg — z|| = distance from z( to = in the complex plane.



