
Solve y′′ − 4y′ + 4y = 0

Using quick 3.4 method. Guess y = ert and plug into equation to find
r2 − 4r+4 = 0. Thus (r− 2)2 = 0. Hence r = 2. Therefore general solution
is y = c1e

2x + c2xe
2x.

Use LONG 5.2 method (normally use this method only when other shorter
methods don’t exist) to find solution for values near x0 = 0.

Suppose the solution y = f(x) is analytic at x0 = 0.

That is f(x) = Σ∞

n=0
f(n)(0)

n! (x− 0)n for x near x0 = 0.

Thus there are constants an = f(n)(0)
n! such that,

f(x) = Σ∞

n=0an(x− 0)n = Σ∞

n=0anx
n.

Find a recursive formula for the constants of the series solution to

y′′ − 4y′ + 4y = 0 near x0 = 0

We will determine these constants an by plugging f into the ODE.

f(x) = Σ∞

n=0anx
n, f ′(x) = Σ∞

n=1annx
n−1, f ′′(x) = Σ∞

n=2ann(n− 1)xn−2.

Σ∞

n=2ann(n− 1)xn−2 − 4Σ∞

n=1annx
n−1 + 4Σ∞

n=0anx
n = 0.

Σ∞

n=0an+2(n+ 2)(n+ 1)xn − 4Σ∞

n=0an+1(n+ 1)xn + 4Σ∞

n=0anx
n = 0.

Σ∞

n=0[an+2(n+ 2)(n+ 1)− 4an+1(n+ 1) + 4an]x
n = 0.

an+2(n+ 2)(n+ 1)− 4an+1(n+ 1) + 4an = 0.

an+2 = 4an+1(n+1)−4an

(n+2)(n+1) .

Hence the recursive formula (if know previous terms, can determine later
terms) is

an+2 = 4
(

(n+1)an+1−an

(n+2)(n+1)

)

Given the recursive formula, an+2 = 4
(

(n+1)an+1−an

(n+2)(n+1)

)

, determine an.

Determine formula for ak by noticing patterns. Note: It is easier to notice
patterns if you do NOT simplify too much.

Find the first 6 terms of the series solution

n = 0 : a2 = 4
(

a1−a0

(2)(1)

)

n = 1 : a3 = 4
(

2a2−a1

(3)(2)

)

= 4

(

(2)(4)
(

a1−a0
(2)(1)

)

−a1

(3)(2)

)

= 4
(

4(a1−a0)−a1

(3)(2)

)

= 4
(

3a1−4a0

3!

)

n = 2: a4 = 4
(

3a3−a2

(4)(3)

)

= 4

(

3(4)( 3a1−4a0
3! )−4( a1−a0

2! )
(4)(3)

)

= 4

(

3( 3a1−4a0
3! )−( a1−a0

2! )
3

)

= 4

(

( 3a1−4a0
2! )−( a1−a0

2! )
3

)

= 4
(

(3a1−4a0)−(a1−a0)
3!

)

= 4
(

2a1−3a0

(3!)

)

n = 3: a5 = 4
(

(4)a4−a3

(5)(4)

)

= 4

(

(4)4( 2a1−3a0
3! )−4( 3a1−4a0

3! )
(5)(4)

)

= 4

(

4( 2a1−3a0
3! )−( 3a1−4a0

3! )
5

)

= 4
(

4(2a1−3a0)−(3a1−4a0)
5(3!)

)

= 4
(

5a1−8a0

5(3!)

)

f(x) ∼ a0+a1x+4
(

a1−a0

2!

)

x2+4
(

3a1−4a0

3!

)

x3+4
(

2a1−3a0

(3!)

)

x4+4
(

5a1−8a0

5(3!)

)

x5

Recall f(x) = a0φ0(x) + a1φ1(x) for linearly independent solutions φ0 and
φ1 to equation y′′ − 4y′ + 4y = 0.

Find the first 5 terms in each of the 2 solns y = φ0(x) and y = φ1(x)

φ0 ∼ 1 + 4
(

−1
2!

)

x2 + 4
(

−4
3!

)

x3 + 4
(

−3
(3!)

)

x4 + 4
(

−8
5(3!)

)

x5

φ1 ∼ x+ 4
(

1
2!

)

x2 + 4
(

3
3!

)

x3 + 4
(

2
(3!)

)

x4 + 4
(

5
5(3!)

)

x5

n = 0 : a2 = 4
(

a1−a0

(2)(1)

)

= 2
(

2a1−2a0

2!

)

n = 1 : a3 = = 4
(

3a1−4a0

3!

)

= 22
(

3a1−4a0

3!

)

n = 2: a4 = 4
(

2a1−3a0

3!

)

= 16
(

2a1−3a0

4!

)

= 8
(

4a1−6a0

4!

)

= 23
(

4a1−6a0

4!

)

n = 3: a5 = 4
(

5a1−8a0

5(3!)

)

= 16
(

5a1−8a0

5!

)

= 24
(

5a1−8a0

5!

)

Hence it appears ak = 2k−1(ka1−2(k−1)a0)
k!



Prove that if an+2 = 4
(

(n+1)an+1−an

(n+2)(n+1)

)

, then ak = 2k−1(ka1−2(k−1)a0)
k!

Need to prove ak = 2k−1(ka1−2(k−1)a0)
k! for k ≥ 0

Given: an+2 = 4
(

(n+1)an+1−an

(n+2)(n+1)

)

for n ≥ 2,

Proof by induction on k.

Suppose k = 0. Then 20−1(0(a1)−2(−1)a0)
0! = 1

2 (2a0) = a0

Suppose k = 1. Then 21−1(1(a1)−2(1−1)a0)
1! = a1

Suppose ak = 2k−1(ka1−2(k−1)a0)
k! for k = n, n+ 1

Thus an = 2n−1(na1−2(n−1)a0)
n! and an+1 = 2n((n+1)a1−2na0)

(n+1)!

Claim: an+2 = 2n+1((n+2)a1−2(n+1)a0)
(n+2)!

an+2 = 4
(

(n+1)an+1−an

(n+2)(n+1)

)

= 4





(n+1)
[

2n((n+1)a1−2na0)

(n+1)!

]

−

[

2n−1(na1−2(n−1)a0)
n!

]

(n+2)(n+1)





= 4





[

2n((n+1)a1−2na0)
n!

]

−

[

2n−1(na1−2(n−1)a0)
n!

]

(n+2)(n+1)





= 4(2)n−1
(

[2((n+1)a1−2na0)]−[na1−2(n−1)a0]
n!(n+2)(n+1)

)

= 2n+1
(

2(n+1)a1−4na0−na1+2(n−1)a0

n!(n+2)(n+1)

)

= 2n+1
(

(n+2)a1−2(n+1)a0)
(n+2)!

)

Thus f(x) = Σ∞

n=0
2n−1(na1−2(n−1)a0)

n! xn

= a1Σ
∞

n=0
2n−1(n)

n! xn − 2a0Σ
∞

n=0
2n−1(n−1)

n! xn

= a0(−2)Σ∞

n=0
2n−1(n−1)

n! xn + a1Σ
∞

n=1
2n−1

(n−1)!x
n

if these two series converge.

For what values of x does Σ∞

n=0
(n−1)2n−1

n! xn converge

Ratio test: Suppose we have the series Σbn . Let L = limn→∞

∣

∣

∣

bn+1

bn

∣

∣

∣

Then, if L < 1, the series is absolutely convergent (and hence convergent).

If L > 1, the series is divergent.

If L = 1, the series may be divergent, conditionally convergent, or absolutely
convergent.

limn→∞

∣

∣

∣

∣

n2n

(n+1)!
xn+1

(n−1)2n−1

n! xn

∣

∣

∣

∣

= limn→∞

∣

∣

∣

2nx
(n+1)(n−1)

∣

∣

∣

= 2x limn→∞

∣

∣

∣

n
(n+1)(n−1)

∣

∣

∣ = 0

Hence the series converges for all x

For what values of x does Σ∞

n=1
2n−1

(n−1)!x
n converge

limn→∞

∣

∣

∣

∣

2n

n! x
n+1

2n−1

(n−1)!
xn

∣

∣

∣

∣

= limn→∞

∣

∣

2x
n

∣

∣ = 2x limn→∞

∣

∣

1
n

∣

∣ = 0

Hence the series converges for all x

Thus the solution is

f(x) = a0(−2)Σ∞

n=0
2n−1(n−1)

n! xn + a1Σ
∞

n=1
2n−1

(n−1)!x
n

and the domain is all real numbers.

I.e., the general solution is f(x) = a0φ0(x) + a1φ1(x)

where φ0(x) = (−2)Σ∞

n=0
2n−1(n−1)

n! xn and φ1(x) = Σ∞

n=1
2n−1

(n−1)!x
n

Note we could have replaced the constant a0 with −2a0, but the ai’s have

meaning: an = f(n)(0)
n! . Thus our initial values are a0 = f(0) and a1 = f ′(0)



In general, to determine if there is a unique solution to the IVP, y′′ − 4y′ +
4y = 0, y(x0) = y0, y

′(x0) = y1, we solve for unknowns a0 and a1.

y(x0) = a0φ0(x0) + a1φ1(x0)
y′(x0) = a0φ

′

0(x0) + a1φ
′

1(x0)

Note that the above system of two equations has a unique solution for the

two unknowns a0 and a1 if and only if det

(

φ0(x0) φ1(x0)
φ′

0(x0) φ′

1(x0)

)

6= 0

In other words the IVP has a unique solution iff the Wronskian of φ0 and
φ1 evaluated at x0 is not zero. Recall that by theorem , this also implies
that φ0 and φ1 are linearly independent and hence the general solution is
y = a0φ0(x) + a1φ1(x) by theorem.

Show that φ0(x) = (−2)Σ∞

n=0
2n−1((n−1))

n! xn and φ1(x) = Σ∞

n=1
2n−1

(n−1)!x
n

are linearly independent by calculating the Wronskian of these

two functions evaluated at x0 = 0.

W (φ1, φ2)(x) =

(

φ1(x) φ2(x)
φ′

1(x) φ′

2(x)

)

=

(

(−2)Σ∞

n=0
2n−1(n−1)

n! xn Σ∞

n=1
2n−1

(n−1)!x
n

(−2)Σ∞

n=1
2n−1(n−1)
(n−1)!xn−1 Σ∞

n=1
n2n−1

(n−1)!x
n−1

)

W (φ1, φ2)(0) =

(

(−2)20−1(−1) 0
0 1

)

=

(

1 0
0 1

)

= 1 6= 0

Hence φ0(x) = (−2)Σ∞

n=0
2n−1((n−1))

n! xn and φ1(x) = Σ∞

n=1
2n−1

(n−1)!x
n are lin-

early independent

When possible identify the functions giving the series solutions. Recall that

by Taylor’s theorem and the ratio test, e2x = Σ∞

n=0
f(n)(x)

n! xn = Σ∞

n=0
2n

n! x
n

for all x.

f(x) = a1Σ
∞

n=0
n2n−1

n! xn − 2a0Σ
∞

n=0
2n−1(n−1)

n! xn

= a1Σ
∞

n=0
n2n−1

n! xn − 2a0Σ
∞

n=0
n2n−1

n! xn + 2a0Σ
∞

n=0
2n−1

n! xn

= (a1 − 2a0)Σ
∞

n=0
n2n−1

n! xn + a0Σ
∞

n=0
2n

n! x
n

= (a1 − 2a0)xΣ
∞

n=1
2n−1

(n−1)!x
n−1 + a0Σ

∞

n=0
2n

n! x
n

= (a1 − 2a0)xΣ
∞

n=0
2n

n! x
n + a0Σ

∞

n=0
2n

n! x
n

= (a1 − 2a0)xe
2x + a0e

2x

Note we have recovered the solution we found using the 3.4 method.

Note a power series solutions exists in a neighborhood of x0 when the solution
is analytic at x0. I.e, the solution is of the form y = Σ∞

n=0an(x−x0)
n where

this series has a nonzero radius of convergence about x0.

When do we know an analytic solution exists? I.e, when is this method
guaranteed to work?

Special case: P (x)y′′ +Q(x)y′ +R(x)y = 0

Then y′′(x) = −Q
P
y′ − R

P
y

Definition: The point x0 is an ordinary point of the ODE,

P (x)y′′ +Q(x)y′ +R(x)y = 0

if Q
P

and R
P

are analytic at x0.

Theorem 5.3.1: If x0 is an ordinary point of the ODE P (x)y′′ + Q(x)y′ +
R(x)y = 0, then the general solution to this ODE is

y = Σ∞

n=1an(x− x0)
n = a0φ0(x) + a1φ1(x)

where φi are power series solutions that are analytic at x0. The solutions
φ0, φ1 form a fundamental set of solutions. The radius of convergence for
each of these series solutions is at least as large as the minimum radii of
convergence of the series for Q

P
and R

P
.

Theorem: If P and Q are polynomial functions, then y = Q(x)/P (x) is
analytic at x0 if and only if P (x0) 6= 0. Moreover if Q/P is reduced, the
radius of convergence of Q(x)/P (x) = min{||x0 − x|| | x ∈ C, P (x) = 0}
where ||x0 − x|| = distance from x0 to x in the complex plane.


