Solve $y^{\prime \prime}-4 y^{\prime}+4 y=0$
Using quick 3.4 method. Guess $y=e^{r t}$ and plug into equation to find $r^{2}-4 r+4=0$. Thus $(r-2)^{2}=0$. Hence $r=2$. Therefore general solution is $y=c_{1} e^{2 x}+c_{2} x e^{2 x}$.

Use LONG 5.2 method (normally use this method only when other shorter methods don't exist) to find solution for values near $x_{0}=0$.

Suppose the solution $y=f(x)$ is analytic at $x_{0}=0$.
That is $f(x)=\Sigma_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!}(x-0)^{n}$ for x near $x_{0}=0$.
Thus there are constants $a_{n}=\frac{f^{(n)}(0)}{n!}$ such that,

$$
f(x)=\sum_{n=0}^{\infty} a_{n}(x-0)^{n}=\sum_{n=0}^{\infty} a_{n} x^{n} .
$$

Find a recursive formula for the constants of the series solution to

 $y^{\prime \prime}-4 y^{\prime}+4 y=0$ near $x_{0}=0$We will determine these constants a_{n} by plugging f into the ODE.
$f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}, f^{\prime}(x)=\sum_{n=1}^{\infty} a_{n} n x^{n-1}, f^{\prime \prime}(x)=\Sigma_{n=2}^{\infty} a_{n} n(n-1) x^{n-2}$.
$\Sigma_{n=2}^{\infty} a_{n} n(n-1) x^{n-2}-4 \Sigma_{n=1}^{\infty} a_{n} n x^{n-1}+4 \Sigma_{n=0}^{\infty} a_{n} x^{n}=0$.
$\Sigma_{n=0}^{\infty} a_{n+2}(n+2)(n+1) x^{n}-4 \Sigma_{n=0}^{\infty} a_{n+1}(n+1) x^{n}+4 \Sigma_{n=0}^{\infty} a_{n} x^{n}=0$.
$\Sigma_{n=0}^{\infty}\left[a_{n+2}(n+2)(n+1)-4 a_{n+1}(n+1)+4 a_{n}\right] x^{n}=0$.
$a_{n+2}(n+2)(n+1)-4 a_{n+1}(n+1)+4 a_{n}=0$.
$a_{n+2}=\frac{4 a_{n+1}(n+1)-4 a_{n}}{(n+2)(n+1)}$.
Hence the recursive formula (if know previous terms, can determine later terms) is

$$
a_{n+2}=4\left(\frac{(n+1) a_{n+1}-a_{n}}{(n+2)(n+1)}\right)
$$

Given the recursive formula, $a_{n+2}=4\left(\frac{(n+1) a_{n+1}-a_{n}}{(n+2)(n+1)}\right)$, determine a_{n}. Determine formula for a_{k} by noticing patterns. Note: It is easier to notice patterns if you do NOT simplify too much.
Find the first 6 terms of the series solution
$n=0: \quad a_{2}=4\left(\frac{a_{1}-a_{0}}{(2)(1)}\right)$
$n=1: \quad a_{3}=4\left(\frac{2 a_{2}-a_{1}}{(3)(2)}\right)=4\left(\frac{(2)(4)\left(\frac{a_{1}-a_{0}}{(2)(1)}\right)-a_{1}}{(3)(2)}\right)=4\left(\frac{4\left(a_{1}-a_{0}\right)-a_{1}}{(3)(2)}\right)$ $=4\left(\frac{3 a_{1}-4 a_{0}}{3!}\right)$
$n=2: \quad a_{4}=4\left(\frac{3 a_{3}-a_{2}}{(4)(3)}\right)=4\left(\frac{3(4)\left(\frac{3 a_{1}-4 a_{0}}{3!}\right)-4\left(\frac{a_{1}-a_{0}}{2!}\right)}{(4)(3)}\right)=4\left(\frac{3\left(\frac{3 a_{1}-4 a_{0}}{3!}\right)-\left(\frac{a_{1}-a_{0}}{2!}\right)}{3}\right)$

$$
=4\left(\frac{\left(\frac{3 a_{1}-4 a_{0}}{2!}\right)-\left(\frac{a_{1}-a_{0}}{2!}\right)}{3}\right)=4\left(\frac{\left(3 a_{1}-4 a_{0}\right)-\left(a_{1}-a_{0}\right)}{3!}\right)=4\left(\frac{2 a_{1}-3 a_{0}}{(3!)}\right)
$$

$n=3: \quad a_{5}=4\left(\frac{(4) a_{4}-a_{3}}{(5)(4)}\right)=4\left(\frac{(4) 4\left(\frac{2 a_{1}-3 a_{0}}{3!}\right)-4\left(\frac{3 a_{1}-4 a_{0}}{3!}\right)}{(5)(4)}\right)$

$$
=4\left(\frac{4\left(\frac{2 a_{1}-3 a_{0}}{3!}\right)-\left(\frac{3 a_{1}-4 a_{0}}{3!}\right)}{5}\right)=4\left(\frac{4\left(2 a_{1}-3 a_{0}\right)-\left(3 a_{1}-4 a_{0}\right)}{5(3!)}\right)=4\left(\frac{5 a_{1}-8 a_{0}}{5(3!)}\right)
$$

$f(x) \sim a_{0}+a_{1} x+4\left(\frac{a_{1}-a_{0}}{2!}\right) x^{2}+4\left(\frac{3 a_{1}-4 a_{0}}{3!}\right) x^{3}+4\left(\frac{2 a_{1}-3 a_{0}}{(3!)}\right) x^{4}+4\left(\frac{5 a_{1}-8 a_{0}}{5(3!)}\right) x^{5}$
Recall $f(x)=a_{0} \phi_{0}(x)+a_{1} \phi_{1}(x)$ for linearly independent solutions ϕ_{0} and ϕ_{1} to equation $y^{\prime \prime}-4 y^{\prime}+4 y=0$.
Find the first 5 terms in each of the 2 solns $y=\phi_{0}(x)$ and $y=\phi_{1}(x)$
$\phi_{0} \sim 1+4\left(\frac{-1}{2!}\right) x^{2}+4\left(\frac{-4}{3!}\right) x^{3}+4\left(\frac{-3}{(3!)}\right) x^{4}+4\left(\frac{-8}{5(3!)}\right) x^{5}$
$\phi_{1} \sim x+4\left(\frac{1}{2!}\right) x^{2}+4\left(\frac{3}{3!}\right) x^{3}+4\left(\frac{2}{(3!)}\right) x^{4}+4\left(\frac{5}{5(3!)}\right) x^{5}$

$$
\begin{array}{ll}
n=0: & a_{2}=4\left(\frac{a_{1}-a_{0}}{(2)(1)}\right)=2\left(\frac{2 a_{1}-2 a_{0}}{2!}\right) \\
n=1: & a_{3}==4\left(\frac{3 a_{1}-4 a_{0}}{3!}\right)=2^{2}\left(\frac{3 a_{1}-4 a_{0}}{3!}\right) \\
n=2: & a_{4}=4\left(\frac{2 a_{1}-3 a_{0}}{3!}\right)=16\left(\frac{2 a_{1}-3 a_{0}}{4!}\right)=8\left(\frac{4 a_{1}-6 a_{0}}{4!}\right)=2^{3}\left(\frac{4 a_{1}-6 a_{0}}{4!}\right) \\
n=3: & a_{5}=4\left(\frac{5 a_{1}-8 a_{0}}{5(3!)}\right)=16\left(\frac{5 a_{1}-8 a_{0}}{5!}\right)=2^{4}\left(\frac{5 a_{1}-8 a_{0}}{5!}\right)
\end{array}
$$

Hence it appears $a_{k}=\frac{2^{k-1}\left(k a_{1}-2(k-1) a_{0}\right)}{k!}$

Prove that if $a_{n+2}=4\left(\frac{(n+1) a_{n+1}-a_{n}}{(n+2)(n+1)}\right)$, then $a_{k}=\frac{2^{k-1}\left(k a_{1}-2(k-1) a_{0}\right)}{k!}$
Need to prove $a_{k}=\frac{2^{k-1}\left(k a_{1}-2(k-1) a_{0}\right)}{k!}$ for $k \geq 0$
Given: $a_{n+2}=4\left(\frac{(n+1) a_{n+1}-a_{n}}{(n+2)(n+1)}\right)$ for $n \geq 2$,
Proof by induction on k.
Suppose $k=0$. Then $\frac{2^{0-1}\left(0\left(a_{1}\right)-2(-1) a_{0}\right)}{0!}=\frac{1}{2}\left(2 a_{0}\right)=a_{0}$
Suppose $k=1$. Then $\frac{2^{1-1}\left(1\left(a_{1}\right)-2(1-1) a_{0}\right)}{1!}=a_{1}$
Suppose $a_{k}=\frac{2^{k-1}\left(k a_{1}-2(k-1) a_{0}\right)}{k!}$ for $k=n, n+1$
Thus $a_{n}=\frac{2^{n-1}\left(n a_{1}-2(n-1) a_{0}\right)}{n!}$ and $a_{n+1}=\frac{2^{n}\left((n+1) a_{1}-2 n a_{0}\right)}{(n+1)!}$
Claim: $a_{n+2}=\frac{2^{n+1}\left((n+2) a_{1}-2(n+1) a_{0}\right)}{(n+2)!}$
$a_{n+2}=4\left(\frac{(n+1) a_{n+1}-a_{n}}{(n+2)(n+1)}\right)=4\left(\frac{(n+1)\left[\frac{2^{n}\left((n+1) a_{1}-2 n a_{0}\right)}{(n+1)!}\right]-\left[\frac{2^{n-1}\left(n a_{1}-2(n-1) a_{0}\right)}{n!}\right]}{(n+2)(n+1)}\right)$
$=4\left(\frac{\left[\frac{2^{n}\left((n+1) a_{1}-2 n a_{0}\right)}{n!}\right]-\left[\frac{2^{n-1}\left(n a_{1}-2(n-1) a_{0}\right)}{n!}\right]}{(n+2)(n+1)}\right)$
$=4(2)^{n-1}\left(\frac{\left[2\left((n+1) a_{1}-2 n a_{0}\right)\right]-\left[n a_{1}-2(n-1) a_{0}\right]}{n!(n+2)(n+1)}\right)$
$=2^{n+1}\left(\frac{2(n+1) a_{1}-4 n a_{0}-n a_{1}+2(n-1) a_{0}}{n!(n+2)(n+1)}\right)=2^{n+1}\left(\frac{\left.(n+2) a_{1}-2(n+1) a_{0}\right)}{(n+2)!}\right)$

Thus $f(x)=\Sigma_{n=0}^{\infty} \frac{2^{n-1}\left(n a_{1}-2(n-1) a_{0}\right)}{n!} x^{n}$

$$
\begin{aligned}
& =a_{1} \Sigma_{n=0}^{\infty} \frac{2^{n-1}(n)}{n!} x^{n}-2 a_{0} \Sigma_{n=0}^{\infty} \frac{2^{n-1}(n-1)}{n!} x^{n} \\
= & a_{0}(-2) \sum_{n=0}^{\infty} \frac{2^{n-1}(n-1)}{n!} x^{n}+a_{1} \Sigma_{n=1}^{\infty} \frac{2^{n-1}}{(n-1)!} x^{n}
\end{aligned}
$$

if these two series converge.

For what values of x does $\Sigma_{n=0}^{\infty} \frac{(n-1) 2^{n-1}}{n!} x^{n}$ converge
Ratio test: Suppose we have the series Σb_{n}. Let $L=\lim _{n \rightarrow \infty}\left|\frac{b_{n+1}}{b_{n}}\right|$
Then, if $L<1$, the series is absolutely convergent (and hence convergent).
If $L>1$, the series is divergent.
If $L=1$, the series may be divergent, conditionally convergent, or absolutely convergent.
$\lim _{n \rightarrow \infty}\left|\frac{\frac{n 2^{n}}{(n+1)!} x^{n+1}}{\frac{(n-1) n^{2-1}}{n!} x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{2 n x}{(n+1)(n-1)}\right|$

$$
=2 x \lim _{n \rightarrow \infty}\left|\frac{n}{(n+1)(n-1)}\right|=0
$$

Hence the series converges for all x
For what values of x does $\Sigma_{n=1}^{\infty} \frac{2^{n-1}}{(n-1)!} x^{n}$ converge
$\lim _{n \rightarrow \infty}\left|\frac{\frac{2^{n}}{n!} x^{n+1}}{\frac{2 n-1}{(n-1)!} x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{2 x}{n}\right|=2 x \lim _{n \rightarrow \infty}\left|\frac{1}{n}\right|=0$
Hence the series converges for all x
Thus the solution is
$f(x)=a_{0}(-2) \Sigma_{n=0}^{\infty} \frac{2^{n-1}(n-1)}{n!} x^{n}+a_{1} \Sigma_{n=1}^{\infty} \frac{2^{n-1}}{(n-1)!} x^{n}$
and the domain is all real numbers.
I.e., the general solution is $f(x)=a_{0} \phi_{0}(x)+a_{1} \phi_{1}(x)$

$$
\text { where } \phi_{0}(x)=(-2) \Sigma_{n=0}^{\infty} \frac{2^{n-1}(n-1)}{n!} x^{n} \text { and } \phi_{1}(x)=\sum_{n=1}^{\infty} \frac{2^{n-1}}{(n-1)!} x^{n}
$$

Note we could have replaced the constant a_{0} with $-2 a_{0}$, but the a_{i} 's have meaning: $a_{n}=\frac{f^{(n)}(0)}{n!}$. Thus our initial values are $a_{0}=f(0)$ and $a_{1}=f^{\prime}(0)$

In general, to determine if there is a unique solution to the IVP, $y^{\prime \prime}-4 y^{\prime}+$ $4 y=0, y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}$, we solve for unknowns a_{0} and a_{1}.
$y\left(x_{0}\right)=a_{0} \phi_{0}\left(x_{0}\right)+a_{1} \phi_{1}\left(x_{0}\right)$
$y^{\prime}\left(x_{0}\right)=a_{0} \phi_{0}^{\prime}\left(x_{0}\right)+a_{1} \phi_{1}^{\prime}\left(x_{0}\right)$
Note that the above system of two equations has a unique solution for the two unknowns a_{0} and a_{1} if and only if $\operatorname{det}\left(\begin{array}{cc}\phi_{0}\left(x_{0}\right) & \phi_{1}\left(x_{0}\right) \\ \phi_{0}^{\prime}\left(x_{0}\right) & \phi_{1}^{\prime}\left(x_{0}\right)\end{array}\right) \neq 0$

In other words the IVP has a unique solution iff the Wronskian of ϕ_{0} and ϕ_{1} evaluated at x_{0} is not zero. Recall that by theorem, this also implies that ϕ_{0} and ϕ_{1} are linearly independent and hence the general solution is $y=a_{0} \phi_{0}(x)+a_{1} \phi_{1}(x)$ by theorem.

Show that $\phi_{0}(x)=(-2) \Sigma_{n=0}^{\infty} \frac{2^{n-1}((n-1))}{n!} x^{n}$ and $\phi_{1}(x)=\Sigma_{n=1}^{\infty} \frac{2^{n-1}}{(n-1)!} x^{n}$ are linearly independent by calculating the Wronskian of these two functions evaluated at $x_{0}=0$.
$W\left(\phi_{1}, \phi_{2}\right)(x)=\left(\begin{array}{cc}\phi_{1}(x) & \phi_{2}(x) \\ \phi_{1}^{\prime}(x) & \phi_{2}^{\prime}(x)\end{array}\right)=\left(\begin{array}{cc}(-2) \Sigma_{n=0}^{\infty} \frac{2^{n-1}(n-1)}{n!} x^{n} & \sum_{n=1}^{\infty} \frac{2^{n-1}}{(n-1)} x^{n} \\ (-2) \Sigma_{n=1}^{\infty} \frac{2^{n-1}(n-1)}{(n-1)!x^{n-1}} & \sum_{n=1}^{\infty} \frac{n 2^{n-1}}{(n-1)!} x^{n-1}\end{array}\right)$
$W\left(\phi_{1}, \phi_{2}\right)(0)=\left(\begin{array}{cc}(-2) 2^{0-1}(-1) & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=1 \neq 0$
Hence $\phi_{0}(x)=(-2) \Sigma_{n=0}^{\infty} \frac{2^{n-1}((n-1))}{n!} x^{n}$ and $\phi_{1}(x)=\sum_{n=1}^{\infty} \frac{2^{n-1}}{(n-1)!} x^{n}$ are linearly independent

When possible identify the functions giving the series solutions. Recall that by Taylor's theorem and the ratio test, $e^{2 x}=\sum_{n=0}^{\infty} \frac{f^{(n)}(x)}{n!} x^{n}=\sum_{n=0}^{\infty} \frac{2^{n}}{n!} x^{n}$ for all x.

$$
\begin{aligned}
& f(x)=a_{1} \Sigma_{n=0}^{\infty} \frac{n 2^{n-1}}{n!} x^{n}-2 a_{0} \Sigma_{n=0}^{\infty} \frac{2^{n-1}(n-1)}{n!} x^{n} \\
& =a_{1} \Sigma_{n=0}^{\infty} \frac{n 2^{n-1}}{n!} x^{n}-2 a_{0} \Sigma_{n=0}^{\infty} \frac{n 2^{n-1}}{n!} x^{n}+2 a_{0} \Sigma_{n=0}^{\infty} \frac{2^{n-1}}{n!} x^{n} \\
& =\left(a_{1}-2 a_{0}\right) \Sigma_{n=0}^{\infty} \frac{n 2^{n-1}}{n!} x^{n}+a_{0} \Sigma_{n=0}^{\infty} \frac{2^{n}}{n!} x^{n}
\end{aligned}
$$

$=\left(a_{1}-2 a_{0}\right) x \Sigma_{n=1}^{\infty} \frac{2^{n-1}}{(n-1)!} x^{n-1}+a_{0} \Sigma_{n=0}^{\infty} \frac{2^{n}}{n!} x^{n}$
$=\left(a_{1}-2 a_{0}\right) x \Sigma_{n=0}^{\infty} \frac{2^{n}}{n!} x^{n}+a_{0} \Sigma_{n=0}^{\infty} \frac{2^{n}}{n!} x^{n}$
$=\left(a_{1}-2 a_{0}\right) x e^{2 x}+a_{0} e^{2 x}$
Note we have recovered the solution we found using the 3.4 method.
Note a power series solutions exists in a neighborhood of x_{0} when the solution is analytic at x_{0}. I.e, the solution is of the form $y=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ where this series has a nonzero radius of convergence about x_{0}.

When do we know an analytic solution exists? I.e, when is this method guaranteed to work?

Special case: $P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0$
Then $y^{\prime \prime}(x)=-\frac{Q}{P} y^{\prime}-\frac{R}{P} y$
Definition: The point x_{0} is an ordinary point of the ODE,

$$
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0
$$

if $\frac{Q}{P}$ and $\frac{R}{P}$ are analytic at x_{0}.
Theorem 5.3.1: If x_{0} is an ordinary point of the ODE $P(x) y^{\prime \prime}+Q(x) y^{\prime}+$ $R(x) y=0$, then the general solution to this ODE is

$$
y=\Sigma_{n=1}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=a_{0} \phi_{0}(x)+a_{1} \phi_{1}(x)
$$

where ϕ_{i} are power series solutions that are analytic at x_{0}. The solutions ϕ_{0}, ϕ_{1} form a fundamental set of solutions. The radius of convergence for each of these series solutions is at least as large as the minimum radii of convergence of the series for $\frac{Q}{P}$ and $\frac{R}{P}$.

Theorem: If P and Q are polynomial functions, then $y=Q(x) / P(x)$ is analytic at x_{0} if and only if $P\left(x_{0}\right) \neq 0$. Moreover if Q / P is reduced, the radius of convergence of $Q(x) / P(x)=\min \left\{\left\|x_{0}-x\right\| \mid x \in \mathbf{C}, P(x)=0\right\}$ where $\left\|x_{0}-x\right\|=$ distance from x_{0} to x in the complex plane.

