$3.6=4.4$ Variation of Parameters

$$
\text { Solve } a y^{\prime \prime \prime}+b y^{\prime \prime}+c y^{\prime}+e y=g(t)
$$

1) Find homogeneous solutions:

Suppose general homogeneous soln to $a y^{\prime \prime \prime}+b y^{\prime \prime}+c y^{\prime}+e y=0$ is

$$
y=c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)+c_{3} \phi_{3}(t)
$$

2.) Find a non-homogeneous solution:

Sect. 3.5 method: Educated guess
Sect. $3.6=4.4: \quad y=u_{1}(t) \phi_{1}+u_{2}(t) \phi_{2}+u_{3}(t) \phi_{3}$ and solve for u_{1}, u_{2}, and u_{3}

3 unknown functions, thus might want 3 equations.
1 equation will come from plugging into $a y^{\prime \prime \prime}+b y^{\prime \prime}+c y^{\prime}+e y=g(t)$
We will choose the remaining equations so that we avoid $u_{i}^{\prime \prime}$
$y=u_{1} \phi_{1}+u_{2} \phi_{2}+u_{3} \phi_{3}$ implies

$$
y^{\prime}=u_{1} \phi_{1}^{\prime}+u_{1}^{\prime} \phi_{1}+u_{2} \phi_{2}^{\prime}+u_{2}^{\prime} \phi_{2}+u_{3} \phi_{3}^{\prime}+u_{3}^{\prime} \phi_{3}
$$

I.e., $y^{\prime}=u_{1} \phi_{1}^{\prime}+u_{2} \phi_{2}^{\prime}+u_{3} \phi_{3}^{\prime}+u_{1}^{\prime} \phi_{1}+u_{2}^{\prime} \phi_{2}+u_{3}^{\prime} \phi_{3}$

Avoid 2nd derivative $u_{i}^{\prime \prime}$: Choose $u_{1}^{\prime} \phi_{1}+u_{2}^{\prime} \phi_{2}+u_{3}^{\prime} \phi_{3}=0$
Thus $y^{\prime}=u_{1} \phi_{1}^{\prime}+u_{2} \phi_{2}^{\prime}+u_{3} \phi_{3}^{\prime}$
$y^{\prime \prime}=u_{1} \phi_{1}^{\prime \prime}+u_{2} \phi_{2}^{\prime \prime}+u_{3} \phi_{3}^{\prime \prime}+u_{1}^{\prime} \phi_{1}^{\prime}+u_{2}^{\prime} \phi_{2}^{\prime}+u_{3}^{\prime} \phi_{3}^{\prime}$ by product rule.
Avoid 2nd derivative $u_{i}^{\prime \prime}$: Choose $u_{1}^{\prime} \phi_{1}^{\prime}+u_{2}^{\prime} \phi_{2}^{\prime}+u_{3}^{\prime} \phi_{3}^{\prime}=0$
Thus $y^{\prime \prime}=u_{1} \phi_{1}^{\prime \prime}+u_{2} \phi_{2}^{\prime \prime}+u_{3} \phi_{3}^{\prime \prime}$
$y^{\prime \prime \prime}=u_{1} \phi_{1}^{\prime \prime \prime}+u_{2} \phi_{2}^{\prime \prime \prime}+u_{3} \phi_{3}^{\prime \prime \prime}+u_{1}^{\prime} \phi_{1}^{\prime \prime}+u_{2}^{\prime} \phi_{2}^{\prime \prime}+u_{3}^{\prime} \phi_{3}^{\prime \prime}$ by product rule.

Plug $y=u_{1}(t) \phi_{1}+u_{2}(t) \phi_{2}+u_{3}(t) \phi_{3}$ (using above derivatives including simplifications) into $a y^{\prime \prime \prime}+b y^{\prime \prime}+c y^{\prime}+e y=0$

After lots of work, this simplifies to $u_{1}^{\prime} \phi_{1}^{\prime} ;+u_{2}^{\prime} \phi_{2}^{\prime \prime}+u_{3}^{\prime} \phi_{3}^{\prime \prime}=\frac{g(t)}{a}$
Thus we have 3 unknowns (the functions, u_{1}, u_{2}, u_{3}) and 3 equations (the two equations we choose in order to avoid $u_{i}^{\prime \prime}$) as well as the equation we get by plugging in $y=u_{1}(t) \phi_{1}+u_{2}(t) \phi_{2}+u_{3}(t) \phi_{3}$ into DE and doing lots of simplification. These 3 equations are

$$
\begin{aligned}
u_{1}^{\prime} \phi_{1}+u_{2}^{\prime} \phi_{2}+u_{3}^{\prime} \phi_{3} & =0 \\
u_{1}^{\prime} \phi_{1}^{\prime}+u_{2}^{\prime} \phi_{2}^{\prime}+u_{3}^{\prime} \phi_{3}^{\prime} & =0 \\
u_{1}^{\prime} \phi_{1}^{\prime \prime}+u_{2}^{\prime} \phi_{2}^{\prime \prime}+u_{3}^{\prime} \phi_{3}^{\prime \prime} & =\frac{g(t)}{a}
\end{aligned}
$$

In matrix form: $\quad\left(\begin{array}{ccc}\phi_{1} & \phi_{2} & \phi_{3} \\ \phi_{1}^{\prime} & \phi_{2}^{\prime} & \phi_{3}^{\prime} \\ \phi_{1}^{\prime \prime} & \phi_{2}^{\prime \prime} & \phi_{3}^{\prime \prime}\end{array}\right)\left(\begin{array}{c}u_{1}^{\prime} \\ u_{2}^{\prime} \\ u_{3}^{\prime}\end{array}\right)=\left(\begin{array}{c}0 \\ 0 \\ \frac{g(t)}{a}\end{array}\right)$
Solve using Cramer's rule.
NOTE: The coefficient matrix is the related to the Wronskian (same matrix, but before you take the determinant). Thus if $W=$ the coefficient matrix, $\mathbf{u}=n \times 1$ vector with ith coordinate u_{i} and $\mathbf{b}=$ $n \times 1$ vector where all coordinates are 0 except the last term is $\frac{g(t)}{a}$, then the matrix formula can be written as

$$
W \mathbf{u}^{\prime}=\mathbf{b}
$$

Don't forget to integrate to find u_{i} after using Cramer's rule to find u_{i}^{\prime}.

Note: If you are likely to forget to divide by a, you might want to do so in the beginning (after solving homogeneous). This is what the book does:

$$
y^{\prime \prime \prime}+\frac{b}{a} y^{\prime \prime}+\frac{c}{a} y^{\prime}+\frac{e}{a} y=\frac{g(t)}{a}
$$

