4.1: General Theory of nth Order Linear Equations

Thm: $L(y)=y^{(n)}+p_{1}(t) y^{(n-1)}+\ldots+p_{n-1}(t) y^{\prime}+p_{n}(t) y$ is a linear function.
Proof: Let a, b be real numbers.
$L(a f+b g)$
$=(a f+b g)^{(n)}+p_{1}(t)(a f+b g)^{(n-1)}+\ldots+p_{n-1}(t)(a f+b g)^{\prime}+p_{n}(t)(a f+b g)$
$=a f^{(n)}+b g^{(n)}+p_{1}\left(a f^{(n-1)}+b g^{(n-1)}\right)+\ldots+p_{n-1}\left(a f^{\prime}+b g^{\prime}\right)+p_{n}(a f+b g)$
$=a f^{(n)}+p_{1} a f^{(n-1)}+\ldots+p_{n-1} a f^{\prime}+p_{n} a f+b g^{(n)}+p_{1} b g^{(n-1)}+\ldots+p_{n-1} b g^{\prime}+p_{n} b g$
$=a\left[f^{(n)}+p_{1} f^{(n-1)}+\ldots+p_{n-1} f^{\prime}+p_{n} f\right]+b\left[g^{(n)}+p_{1} g^{(n-1)}+\ldots+p_{n-1} g^{\prime}+p_{n} g\right]$

$$
=a L(f)+b L(g)
$$

Theorem: If $\phi_{i}, i=1, \ldots, n$ are solutions to a homogeneous linear differential equation (i.e., $\left.y^{(n)}+p_{1}(t) y^{(n-1)}+\ldots+p_{n-1}(t) y^{\prime}+p_{n}(t) y=0\left(^{*}\right)\right)$, then $c_{1} \phi_{1}+c_{2} \phi_{2}+\ldots+c_{n} \phi_{n}$ is also a solution to this linear differential equation.
Pf: Since $\phi_{i}, i=1, \ldots, n$ are solutions to $\left({ }^{*}\right), L\left(\phi_{i}\right)=0$ for $i=1, \ldots, n$.
Thus $L\left(c_{1} \phi_{1}+c_{2} \phi_{2}+\ldots+c_{n} \phi_{n}\right)=c_{1} L\left(\phi_{1}\right)+c_{2} L\left(\phi_{2}\right)+\ldots+c_{n} L\left(\phi_{n}\right)=0$. Thus $c_{1} \phi_{1}+c_{2} \phi_{2}+\ldots+c_{n} \phi_{n}$ is also a solution to $\left(^{*}\right)$.
Solve: $y^{\prime \prime}+y=0, y(0)=-1, y^{\prime}(0)=-3$
$r^{2}+1=0$ implies $r^{2}=-1$. Thus $r= \pm i$.
Since $r=0 \pm 1 i, y=k_{1} \cos (t)+k_{2} \sin (t)$. Then $y^{\prime}=-k_{1} \sin (t)+k_{2} \cos (t)$
$y(0)=-1: \quad-1=k_{1} \cos (0)+k_{2} \sin (0)$ implies $-1=k_{1}$
$y^{\prime}(0)=-3: \quad-3=-k_{1} \sin (0)+k_{2} \cos (0)$ implies $-3=k_{2}$
Thus IVP solution: $y=-\cos (t)-3 \sin (t)$

When does the following IVP have a unique solution:

IVP: $y^{(n)}+p_{1}(t) y^{(n-1)}+\ldots+p_{n-1}(t) y^{\prime}+p_{n}(t) y=0$,

$$
y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{1}, \ldots, y^{(n-1)}\left(t_{0}\right)=y_{n-1}
$$

Suppose $y=c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)+\ldots+c_{n} \phi_{n}(t)$ is a solution to this IVT Then

$$
\begin{array}{cc}
y\left(t_{0}\right)=y_{0}: & y_{0}=c_{1} \phi_{1}\left(t_{0}\right)+c_{2} \phi_{2}\left(t_{0}\right)+\ldots+c_{n} \phi_{n}\left(t_{0}\right) \\
y^{\prime}\left(t_{0}\right)=y_{1}: & y_{1}=c_{1} \phi_{1}^{\prime}\left(t_{0}\right)+c_{2} \phi_{2}^{\prime}\left(t_{0}\right)+\ldots+c_{n} \phi_{n}^{\prime}\left(t_{0}\right)
\end{array}
$$

$y^{(n-1)}\left(t_{0}\right)=y_{n-1}: \quad y_{n-1}=c_{1} \phi_{1}^{(n-1)}\left(t_{0}\right)+c_{2} \phi_{2}^{(n-1)}\left(t_{0}\right)+\ldots+c_{n} \phi_{n}^{(n-1)}\left(t_{0}\right)$

To find IVP solution, need to solve above system of equations for the unknowns $c_{i}, i=1, \ldots, n$.

Note the IVP has a unique solution if and only if the above system of equations has a unique solution for the c_{i}.

Note that in these equations the c_{i} are the unknowns and the $y_{i}, \phi_{i}\left(t_{0}\right), \ldots \phi_{i}^{(n-1)}\left(t_{0}\right)$, are the constants.
We can translate this linear system of equations into matrix form:

$$
\left[\begin{array}{cccc}
\phi_{1}\left(t_{0}\right) & \phi_{2}\left(t_{0}\right) & \ldots & \phi_{n}\left(t_{0}\right) \\
\phi_{1}^{\prime}\left(t_{0}\right) & \phi_{2}^{\prime}\left(t_{0}\right) & \ldots & \phi_{n}^{\prime}\left(t_{0}\right) \\
& \cdot & & \\
& \cdot & & \\
\phi_{1}^{(n-1)}\left(t_{0}\right) & \phi_{2}^{(n-1)}\left(t_{0}\right) & \ldots & \phi_{n}^{(n-1)}\left(t_{0}\right)
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\cdot \\
\cdot \\
\cdot \\
c_{n}
\end{array}\right]=\left[\begin{array}{c}
y_{0} \\
y_{1} \\
\cdot \\
\cdot \\
\cdot \\
y_{n-1}
\end{array}\right]
$$

Note this equation has a unique solution if and only if

$$
\operatorname{det}\left[\begin{array}{cccc}
\phi_{1}\left(t_{0}\right) & \phi_{2}\left(t_{0}\right) & \ldots & \phi_{n}\left(t_{0}\right) \\
\phi_{1}^{\prime}\left(t_{0}\right) & \phi_{2}^{\prime}\left(t_{0}\right) & \ldots & \phi_{n}^{\prime}\left(t_{0}\right) \\
& \cdot & & \\
& \cdot & & \\
\phi_{1}^{(n-1)}\left(t_{0}\right) & \phi_{2}^{(n-1)}\left(t_{0}\right) & \ldots & \phi_{n}^{(n-1)}\left(t_{0}\right)
\end{array}\right] \neq 0
$$

Definition: The Wronskian of the functions, $\phi_{1}, \phi_{2}, \ldots, \phi_{n}$ is

$$
W\left(\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right)=\operatorname{det}\left[\begin{array}{cccc}
\phi_{1}(t) & \phi_{2}(t) & \ldots & \phi_{n}(t) \\
\phi_{1}^{\prime}(t) & \phi_{2}^{\prime}(t) & \ldots & \phi_{n}^{\prime}(t) \\
& \cdot & & \\
& \cdot & & \\
\phi_{1}^{(n-1)}(t) & \phi_{2}^{(n-1)}(t) & \ldots & \phi_{n}^{(n-1)}(t)
\end{array}\right]
$$

Theorem: Suppose that $\phi_{i}, i=1, \ldots, n$ are solutions to

$$
y^{(n)}+p_{1}(t) y^{(n-1)}+\ldots+p_{n-1}(t) y^{\prime}+p_{n}(t) y=0
$$

If $W\left(\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right)\left(t_{0}\right) \neq 0$, then there is a unique choice of constants c_{i} such that $c_{1} \phi_{1}+c_{2} \phi_{2}+\ldots+c_{n} \phi_{n}$ satisfies this homogeneous linear differential equation and initial conditions, $y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{1}, \ldots, y^{(n-1)}\left(t_{0}\right)=y_{n-1}$.

Recall $\phi_{1}, \ldots, \phi_{n}$ are linearly independent iff $c_{1}=\ldots=c_{n}=0$ is the only solution to $c_{1} \phi_{1}+\ldots+c_{n} \phi_{n}=\mathbf{0}$.

If ϕ_{i} are functions of t, then $\mathbf{0}$ is the constant function, $\mathbf{0}(t)=0$ for all t. Thus $c_{1} \phi_{1}(t)+\ldots+c_{n} \phi_{n}(t)=0$ for all t.

Hence $c_{1} \phi_{1}^{(k)}(t)+\ldots+c_{n} \phi_{n}^{(k)}(t)=0$ for all t, k if derivatives exist.
Thus $\phi_{1}, \ldots, \phi_{n}$ are linearly independent iff for any given f, $c_{1} \phi_{1}(t)+\ldots+c_{n} \phi_{n}(t)=0$ has a unique solution (that works for all t).
iff the following system of equations has a unique solution

$$
\begin{gathered}
c_{1} \phi_{1}(t)+c_{2} \phi_{2}(t)+\ldots+c_{n} \phi_{n}(t)=0 \\
c_{1} \phi_{1}^{\prime}(t)+c_{2} \phi_{2}^{\prime}(t)+\ldots+c_{n} \phi_{n}^{\prime}(t)=0 \\
\cdot \\
\cdot \\
\cdot \\
c_{1} \phi_{1}^{(n-1)}(t)+c_{2} \phi_{2}^{(n-1)}(t)+\ldots+c_{n} \phi_{n}^{(n-1)}(t)=0
\end{gathered}
$$

iff the following system of equations has a unique solution

$$
\left[\begin{array}{cccc}
\phi_{1}(t) & \phi_{2}(t) & \ldots & \phi_{n}(t) \\
\phi_{1}^{\prime}(t) & \phi_{2}^{\prime}(t) & \ldots & \phi_{n}^{\prime}(t) \\
& \cdot & & \\
& \cdot & & \\
\phi_{1}^{(n-1)}(t) & \phi_{2}^{(n-1)}(t) & \ldots & \phi_{n}^{(n-1)}(t)
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\cdot \\
\cdot \\
\cdot \\
c_{n}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\cdot \\
\cdot \\
\cdot \\
0
\end{array}\right]
$$

Note this equation has a unique solution if and only if for some t_{0}

$$
\operatorname{det}\left[\begin{array}{cccc}
\phi_{1}\left(t_{0}\right) & \phi_{2}\left(t_{0}\right) & \ldots & \phi_{n}\left(t_{0}\right) \\
\phi_{1}^{\prime}\left(t_{0}\right) & \phi_{2}^{\prime}\left(t_{0}\right) & \ldots & \phi_{n}^{\prime}\left(t_{0}\right) \\
& \cdot & & \\
& \cdot & & \\
\phi_{1}^{(n-1)}\left(t_{0}\right) & \phi_{2}^{(n-1)}\left(t_{0}\right) & \ldots & \phi_{n}^{(n-1)}\left(t_{0}\right)
\end{array}\right] \neq 0
$$

iff $W\left(\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right)\left(t_{0}\right) \neq 0$,
Example: Determine if $\left\{1+2 t, 5+4 t^{2}, 6-8 t+8 t^{2}\right\}$ are linearly independent:

Method 1: Solve $c_{1}(1+2 t)+c_{2}\left(5+4 t^{2}\right)+c_{3}\left(6-8 t+8 t^{2}\right)=0$
Or equivalently, solve $c_{1}\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]+c_{2}\left[\begin{array}{l}5 \\ 0 \\ 4\end{array}\right]+c_{3}\left[\begin{array}{c}6 \\ -8 \\ 8\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
Or equivalently, solve $\left[\begin{array}{ccc}1 & 5 & 6 \\ 2 & 0 & -8 \\ 0 & 4 & 8\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
Method 2: Check the Wronskian

nth order LINEAR differential equation:

Theorem 4.1.1: If $p_{i}:(a, b) \rightarrow R, i=1, \ldots, n$ and $g:(a, b) \rightarrow R$ are continuous and $a<t_{0}<b$, then there exists a unique function $y=\phi(t)$, $\phi:(a, b) \rightarrow R$ that satisfies the initial value problem

$$
\begin{gathered}
y^{(n)}+p_{1}(t) y^{(n-1)}+\ldots+p_{n-1}(t) y^{\prime}+p_{n}(t) y=g(t), \\
y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{1}, \quad y^{(n-1)}\left(t_{0}\right)=y_{n-1}
\end{gathered}
$$

Proof: We proved the case $n=1$ using an integrating factor. When $n>1$, see more advanced textbook.

Claim: If p_{i} are continuous on (a, b), if $\phi_{1}, \ldots, \phi_{n}$ are linearly independent solutions to

$$
y^{(n)}+p_{1}(t) y^{(n-1)}+\ldots+p_{n-1}(t) y^{\prime}+p_{n}(t) y=0
$$

then $\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ is a basis for the solution set to this differential equation.
Theorem 4.1.2: If p_{i} are continuous on (a, b), suppose that $\phi_{i}, i=1, \ldots, n$ are solutions to $y^{(n)}+p_{1}(t) y^{(n-1)}+\ldots+p_{n-1}(t) y^{\prime}+p_{n}(t) y=0$.
If $W\left(\phi_{1}, \phi_{2}, \ldots, \phi_{n}\right)\left(t_{0}\right) \neq 0$, for some $t_{0} \in(a, b)$, then any solution to this homogeneous linear differential equation can be written as

$$
y=c_{1} \phi_{1}+c_{2} \phi_{2}+\ldots+c_{n} \phi_{n} \text { for some constants } c_{i}
$$

Defn: The $\phi_{1}, \ldots, \phi_{n}$ are called a fundamental set of solutions to

$$
y^{(n)}+p_{1}(t) y^{(n-1)}+\ldots+p_{n-1}(t) y^{\prime}+p_{n}(t) y=0
$$

Theorem: Given any nth order homogeneous linear differential equation, there exist a set of n functions which form a fundamental set of solutions.

