3.7/8 Mechanical Vibrations:

$$
\begin{gathered}
m u^{\prime \prime}(t)+\gamma u^{\prime}(t)+k u(t)=F_{\text {external }}, \quad m, \gamma, k \geq 0 \\
m g-k L=0, \quad F_{\text {damping }}(t)=-\gamma u^{\prime}(t)
\end{gathered}
$$

$m=$ mass,
$k=$ spring force proportionality constant,
$\gamma=$ damping force proportionality constant
$g=9.8 \mathrm{~m} / \mathrm{sec}^{2}$ or $32 \mathrm{ft} / \mathrm{sec}^{2} . \quad$ Weight $=m g$.

Electrical Vibrations:
Voltage drop across inductor + resistor + capacitor $=$ the supplied voltage

$$
L \frac{d I(t)}{d t}+R I(t)+\frac{1}{C} Q(t)=E(t), \quad L, R, C \geq 0 \text { and } I=\frac{d Q}{d t}
$$

$$
L Q^{\prime \prime}(t)+R Q^{\prime}(t)+\frac{1}{C} Q(t)=E(t)
$$

$L=$ inductance (henrys),
$R=$ resistance (ohms)
$C=$ capacitance (farads)
$Q(t)=$ charge at time t (coulombs)
$I(t)=$ current at time t (amperes)
$E(t)=$ impressed voltage (volts).

1 volt $=1$ ohm $\cdot 1$ ampere $=1$ coulomb $/ 1$ farad $=$ 1 henry $\cdot 1$ amperes/ 1 second

Trig background:
$\cos (y \mp x)=\cos (x \mp y)=\cos (x) \cos (y) \pm \sin (x) \sin (y)$
Let $c_{1}=R \cos (\delta), c_{2}=R \sin (\delta)$ in
$c_{1} \cos \left(\omega_{0} t\right)+c_{2} \sin \left(\omega_{0} t\right)$

$$
\begin{aligned}
& =R \cos (\delta) \cos \left(\omega_{0} t\right)+R \sin (\delta) \sin \left(\omega_{0} t\right) \\
& =R \cos \left(\omega_{0} t-\delta\right)
\end{aligned}
$$

Amplitude $=R$

frequency $=\omega_{0}$ (measured in radians per unit time).
period $=\frac{2 \pi}{\omega_{0}} \quad$ phase $($ displacement $)=\delta$
$c_{1}=R \cos (\delta), c_{2}=R \sin (\delta)$ implies
$c_{1}^{2}+c_{2}^{2}=R^{2} \cos ^{2}(\delta)+R^{2} \sin ^{2}(\delta)$

$$
=R^{2}\left(\cos ^{2}(\delta)+\sin ^{2}(\delta)\right)=R^{2}
$$

and $\frac{R \sin (\delta)}{R \cos (\delta)}=\tan (\delta)=\frac{c_{2}}{c_{1}}$
BUT easier to plot to convert Euclidean coordinates $\left(c_{1}, c_{2}\right)=(R \cos (\delta), R \sin (\delta))$ into polar coordinates $(R, \delta)=($ length, angle $)$.
3.7: Homogeneous equation (no external force):

$$
m u^{\prime \prime}(t)+\gamma u^{\prime}(t)+k u(t)=0, \quad m, \gamma, k \geq 0
$$

$r_{1}, r_{2}=\frac{-\gamma \pm \sqrt{\gamma^{2}-4 k m}}{2 m}$
Critical damping: $\gamma=2 \sqrt{\mathrm{~km}}$

$$
\gamma^{2}-4 k m=0: u(t)=\left(c_{1}+c_{2} t\right) e^{r_{1} t}
$$

Note $r_{1}=-\frac{\gamma}{2 m}<0 . \quad$ Thus $u(t) \rightarrow 0$ as $t \rightarrow \infty$
Overdamped: $\gamma>2 \sqrt{k m}$
$\gamma^{2}-4 k m>0: u(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}$
Note $r_{1}, r_{2}<0 . \quad$ Thus $u(t) \rightarrow 0$ as $t \rightarrow \infty$
Example $u(t)=4 e^{-t}-3 e^{-2 t}$
If $t>0,4 e^{-t}>3 e^{-2 t}$
As $t \rightarrow \infty, e^{-2 t} \rightarrow 0$ faster than $e^{-t} \rightarrow 0$
If $t<0,4 e^{-t}<3 e^{-2 t}$
As $t \rightarrow-\infty, e^{-2 t} \rightarrow \infty$ faster than $e^{-t} \rightarrow \infty$

Underdamped: $\gamma<2 \sqrt{\mathrm{~km}}$

$$
\begin{array}{r}
\gamma^{2}-4 k m<0: u(t)=e^{-\frac{\gamma t}{2 m}}\left(c_{1} \cos \mu t+c_{2} \sin \mu t\right) \\
\quad=e^{-\frac{\gamma t}{2 m} R \cos (\mu t-\delta)} \\
\text { where } c_{1}=R \cos (\delta), c_{2}=R \sin (\delta)
\end{array}
$$

$\mu=$ quasi frequency, $\frac{2 \pi}{\mu}=$ quasi period
Note if $\gamma \neq 0, \quad$ then $u(t) \rightarrow 0$ as $t \rightarrow \infty$

Note if $\gamma=0$, then

NOTE if $\gamma \neq 0$, then homogeneous solution goes to 0 as $t \rightarrow \infty$.

Thus initial values have very little effect on the longterm behaviour of solution if $\gamma \neq 0$.

Note: The larger γ is, the faster the homogeneous solution goes to 0 as $t \rightarrow \infty$.
3.8: $F_{\text {external }} \neq 0$

$$
m u^{\prime \prime}(t)+\gamma u^{\prime}(t)+k u(t)=F_{\text {external }}, \quad m, \gamma, k \geq 0
$$

General solution: $u(t)=c_{1} \phi_{1}+c_{2} \phi_{2}+\psi$
where ϕ_{1}, ϕ_{2} are homogeneous solutions and ψ is a non-homogeneous solution.

NOTE if $\gamma \neq 0$, then homogeneous solution $c_{1} \phi_{1}+c_{2} \phi_{2}$ goes to 0 as $t \rightarrow \infty$.

Thus if $\gamma \neq 0$, then $u(t) \rightarrow \psi$ as $t \rightarrow \infty$.
No damping $(\gamma=0)$ example: $u^{\prime \prime}+u=\cos (t)$
Step 1: Solve homogeneous $u^{\prime \prime}+u=0$

$$
r^{2}+1=0 \text { implies } r= \pm i
$$

Homogeneous solution $u(t)=c_{1} \cos (t)+c_{2} \sin (t)$
Step 2: Find a non-homogeneous solution.

Guess $u(t)=$

Plug in plus lots of work implies $A=0$ and $B=\frac{1}{2}$

Thus general non-homogeneous solution:

$$
u(t)=c_{1} \cos (t)+c_{2} \sin (t)+\frac{1}{2} t \sin (t)
$$

No damping example $u^{\prime \prime}+u=\cos (\omega t)$ where $\omega \neq 1$.
Step 1: Solve homogeneous $u^{\prime \prime}+u=0$

$$
r^{2}+1=0 \text { implies } r= \pm i
$$

Homogeneous solution $u(t)=c_{1} \cos (t)+c_{2} \sin (t)$
Step 2: Find a non-homogeneous solution.
Since $\omega \neq 1$, guess $u(t)=$

Trig background:
$\cos (y \mp x)=\cos (x \mp y)=\cos (x) \cos (y) \pm \sin (x) \sin (y)$
$\cos (u)+\cos (v)=2 \cos \left(\frac{u+v}{2}\right) \cos \left(\frac{u-v}{2}\right)$
$\cos (u)-\cos (v)=-2 \sin \left(\frac{u+v}{2}\right) \sin \left(\frac{u-v}{2}\right)$
$\sin (u)+\sin (v)=2 \sin \left(\frac{u+v}{2}\right) \cos \left(\frac{u-v}{2}\right)$
$\sin (u)-\sin (v)=\sin (u)+\sin (-v)=2 \sin \left(\frac{u-v}{2}\right) \cos \left(\frac{u+v}{2}\right) \square$
Derivation:
Let $x=\left(\frac{u+v}{2}\right)$ and $y=\left(\frac{u-v}{2}\right)$
$\cos (u)=\cos \left(\left(\frac{u+v}{2}\right)+\left(\frac{u-v}{2}\right)\right)$

$$
=\cos \left(\frac{u+v}{2}\right) \cos \left(\frac{u-v}{2}\right)-\sin \left(\frac{u+v}{2}\right) \sin \left(\frac{u-v}{2}\right)
$$

$\cos (v)=\cos \left(\left(\frac{u+v}{2}\right)-\left(\frac{u-v}{2}\right)\right)$

$$
=\cos \left(\frac{u+v}{2}\right) \cos \left(\frac{u-v}{2}\right)+\sin \left(\frac{u+v}{2}\right) \sin \left(\frac{u-v}{2}\right)
$$

Ex: $u(t)=\cos (t)+\cos (3 t)=$

Example with damping:

$$
u^{\prime \prime}+\gamma u^{\prime}+u=\cos (\omega t) \text { where } \gamma \text { is small. }
$$

