3.7/8 Mechanical Vibrations:

$$\begin{split} mu''(t) + \gamma u'(t) + ku(t) &= F_{external}, \quad m, \gamma, k \geq 0 \\ mg - kL &= 0, \qquad F_{damping}(t) = -\gamma u'(t) \\ m &= \text{mass}, \\ k &= \text{spring force proportionality constant}, \\ \gamma &= \text{damping force proportionality constant} \\ g &= 9.8 \text{ m/sec}^2 \text{ or } 32 \text{ ft/sec}^2. \quad \text{Weight} = mg. \end{split}$$

Electrical Vibrations:

Voltage drop across inductor + resistor + capacitor = the supplied voltage $L\frac{dI(t)}{dt} + RI(t) + \frac{1}{C}Q(t) = E(t), \quad L, R, C \ge 0 \text{ and } I = \frac{dQ}{dt}$ $LQ''(t) + RQ'(t) + \frac{1}{C}Q(t) = E(t)$

L = inductance (henrys), R = resistance (ohms) C = capacitance (farads) Q(t) = charge at time t (coulombs) I(t) = current at time t (amperes)E(t) = impressed voltage (volts).

1 volt = 1 ohm \cdot 1 ampere = 1 coulomb / 1 farad = 1 henry \cdot 1 amperes/ 1 second

Trig background:

$$cos(y \mp x) = cos(x \mp y) = cos(x)cos(y) \pm sin(x)sin(y)$$

Let $c_1 = Rcos(\delta), c_2 = Rsin(\delta)$ in
 $c_1 cos(\omega_0 t) + c_2 sin(\omega_0 t)$

$$= R\cos(\delta)\cos(\omega_0 t) + R\sin(\delta)\sin(\omega_0 t)$$
$$= R\cos(\omega_0 t - \delta)$$

Amplitude = R frequency = ω_0 (measured in radians per unit time). period = $\frac{2\pi}{\omega_0}$ phase (displacement) = δ $c_1 = R\cos(\delta), c_2 = R\sin(\delta)$ implies $c_1^2 + c_2^2 = R^2\cos^2(\delta) + R^2\sin^2(\delta)$ $= R^2(\cos^2(\delta) + \sin^2(\delta)) = R^2$

and $\frac{Rsin(\delta)}{Rcos(\delta)} = tan(\delta) = \frac{c_2}{c_1}$

BUT easier to plot to convert Euclidean coordinates $(c_1, c_2) = (Rcos(\delta), Rsin(\delta))$ into polar coordinates $(R, \delta) = (\text{length, angle}).$ 3.7: Homogeneous equation (no external force): $mu''(t) + \gamma u'(t) + ku(t) = 0, m, \gamma, k \ge 0$

$$r_1, r_2 = \frac{-\gamma \pm \sqrt{\gamma^2 - 4km}}{2m}$$

Critical damping: $\gamma = 2\sqrt{km}$

$$\gamma^2 - 4km = 0$$
: $u(t) = (c_1 + c_2 t)e^{r_1 t}$

Note $r_1 = -\frac{\gamma}{2m} < 0$. Thus $u(t) \to 0$ as $t \to \infty$

Overdamped: $\gamma > 2\sqrt{km}$

$$\begin{split} \gamma^2 - 4km > 0: \ u(t) &= c_1 e^{r_1 t} + c_2 e^{r_2 t} \\ \text{Note } r_1, r_2 < 0. \qquad \text{Thus } u(t) \to 0 \text{ as } t \to \infty \\ \text{Example } u(t) &= 4e^{-t} - 3e^{-2t} \\ \text{If } t > 0, \ 4e^{-t} > 3e^{-2t} \\ \text{As } t \to \infty, \ e^{-2t} \to 0 \text{ faster than } e^{-t} \to 0 \\ \text{If } t < 0, \ 4e^{-t} < 3e^{-2t} \\ \text{As } t \to -\infty, \ e^{-2t} \to \infty \text{ faster than } e^{-t} \to \infty \end{split}$$

Underdamped: $\gamma < 2\sqrt{km}$

$$\gamma^2 - 4km < 0: \ u(t) = e^{-\frac{\gamma t}{2m}} (c_1 cos\mu t + c_2 sin\mu t)$$
$$= e^{-\frac{\gamma t}{2m}} Rcos(\mu t - \delta)$$
where $c_1 = Rcos(\delta), \ c_2 = Rsin(\delta)$

 $\mu =$ quasi frequency, $\frac{2\pi}{\mu} =$ quasi period

Note if $\gamma \neq 0$, then $u(t) \rightarrow 0$ as $t \rightarrow \infty$

Note if $\gamma = 0$, then

NOTE if $\gamma \neq 0$, then homogeneous solution goes to 0 as $t \to \infty$.

Thus initial values have very little effect on the longterm behaviour of solution if $\gamma \neq 0$.

Note: The larger γ is, the faster the homogeneous solution goes to 0 as $t \to \infty$.

3.8: $F_{external} \neq 0$ $mu''(t) + \gamma u'(t) + ku(t) = F_{external}, \quad m, \gamma, k \ge 0$

General solution: $u(t) = c_1\phi_1 + c_2\phi_2 + \psi$

where ϕ_1, ϕ_2 are homogeneous solutions and ψ is a non-homogeneous solution.

NOTE if $\gamma \neq 0$, then homogeneous solution $c_1\phi_1 + c_2\phi_2$ goes to 0 as $t \to \infty$.

Thus if $\gamma \neq 0$, then $u(t) \rightarrow \psi$ as $t \rightarrow \infty$.

No damping $(\gamma = 0)$ example: u'' + u = cos(t)Step 1: Solve homogeneous u'' + u = 0 $r^2 + 1 = 0$ implies $r = \pm i$ Homogeneous solution $u(t) = c_1 cos(t) + c_2 sin(t)$

Step 2: Find a non-homogeneous solution.

Guess u(t) =

Plug in plus lots of work implies A = 0 and $B = \frac{1}{2}$

Thus general non-homogeneous solution: $u(t) = c_1 cos(t) + c_2 sin(t) + \frac{1}{2} tsin(t)$ No damping example $u'' + u = cos(\omega t)$ where $\omega \neq 1$.

Step 1: Solve homogeneous u'' + u = 0 $r^2 + 1 = 0$ implies $r = \pm i$

Homogeneous solution $u(t) = c_1 cos(t) + c_2 sin(t)$

Step 2: Find a non-homogeneous solution.

Since $\omega \neq 1$, guess u(t) =

Trig background:

$$cos(y \mp x) = cos(x \mp y) = cos(x)cos(y) \pm sin(x)sin(y)$$

$$cos(u) + cos(v) = 2cos(\frac{u+v}{2})cos(\frac{u-v}{2})$$

$$cos(u) - cos(v) = -2sin(\frac{u+v}{2})sin(\frac{u-v}{2})$$

$$sin(u) + sin(v) = 2sin(\frac{u+v}{2})cos(\frac{u-v}{2})$$

$$sin(u) - sin(v) = sin(u) + sin(-v) = 2sin(\frac{u-v}{2})cos(\frac{u+v}{2})$$
Derivation:

Let
$$x = \left(\frac{u+v}{2}\right)$$
 and $y = \left(\frac{u-v}{2}\right)$
 $\cos(u) = \cos\left(\left(\frac{u+v}{2}\right) + \left(\frac{u-v}{2}\right)\right)$
 $= \cos\left(\frac{u+v}{2}\right)\cos\left(\frac{u-v}{2}\right) - \sin\left(\frac{u+v}{2}\right)\sin\left(\frac{u-v}{2}\right)$
 $\cos(v) = \cos\left(\left(\frac{u+v}{2}\right) - \left(\frac{u-v}{2}\right)\right)$
 $= \cos\left(\frac{u+v}{2}\right)\cos\left(\frac{u-v}{2}\right) + \sin\left(\frac{u+v}{2}\right)\sin\left(\frac{u-v}{2}\right)$
Ex: $u(t) = \cos(t) + \cos(3t) =$

Graph:

Example with damping:

$$u'' + \gamma u' + u = \cos(\omega t)$$
 where γ is small.