
3.7/8 Mechanical Vibrations:

mu′′(t) + γu′(t) + ku(t) = Fexternal, m, γ, k ≥ 0

mg − kL = 0, Fdamping(t) = −γu′(t)
m= mass,

k = spring force proportionality constant,

γ = damping force proportionality constant

g = 9.8 m/sec2 or 32 ft/sec2. Weight = mg.

Electrical Vibrations:

Voltage drop across inductor + resistor + capacitor
= the supplied voltage

LdI(t)
dt +RI(t) + 1

CQ(t) = E(t), L,R,C ≥ 0 and I = dQ
dt

LQ′′(t) +RQ′(t) + 1
CQ(t) = E(t)

L = inductance (henrys),

R = resistance (ohms)

C = capacitance (farads)

Q(t) = charge at time t (coulombs)

I(t) = current at time t (amperes)

E(t) = impressed voltage (volts).

1 volt = 1 ohm · 1 ampere = 1 coulomb / 1 farad =
1 henry · 1 amperes/ 1 second
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Trig background:

cos(y∓x) = cos(x∓y) = cos(x)cos(y)±sin(x)sin(y)

Let c1 = Rcos(δ), c2 = Rsin(δ) in

c1cos(ω0t) + c2sin(ω0t)

= Rcos(δ)cos(ω0t) +Rsin(δ)sin(ω0t)

= Rcos(ω0t− δ)

Amplitude = R

frequency = ω0 (measured in radians per unit time).

period = 2π
ω0

phase (displacement) = δ

c1 = Rcos(δ), c2 = Rsin(δ) implies

c21 + c22 = R2cos2(δ) +R2sin2(δ)
= R2(cos2(δ) + sin2(δ)) = R2

and Rsin(δ)
Rcos(δ) = tan(δ) = c2

c1

BUT easier to plot to convert Euclidean coordinates
(c1, c2) = (Rcos(δ), Rsin(δ)) into polar coordinates
(R, δ) = (length, angle).
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3.7: Homogeneous equation (no external force):

mu′′(t) + γu′(t) + ku(t) = 0, m, γ, k ≥ 0

r1, r2 =
−γ±

√
γ2−4km

2m

Critical damping: γ = 2
√
km

γ2 − 4km = 0: u(t) = (c1 + c2t)e
r1t

Note r1 = − γ
2m < 0. Thus u(t) → 0 as t→ ∞

Overdamped: γ > 2
√
km

γ2 − 4km > 0: u(t) = c1e
r1t + c2e

r2t

Note r1, r2 < 0. Thus u(t) → 0 as t→ ∞

Example u(t) = 4e−t − 3e−2t

If t > 0, 4e−t > 3e−2t

As t→ ∞, e−2t → 0 faster than e−t → 0

If t < 0, 4e−t < 3e−2t

As t→ −∞, e−2t → ∞ faster than e−t → ∞
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Underdamped: γ < 2
√
km

γ2 − 4km < 0: u(t) = e−
γt
2m (c1cosµt+ c2sinµt)

= e−
γt
2mRcos(µt− δ)

where c1 = Rcos(δ), c2 = Rsin(δ)

µ = quasi frequency, 2π
µ = quasi period

Note if γ ̸= 0, then u(t) → 0 as t→ ∞

Note if γ = 0, then

NOTE if γ ̸= 0, then homogeneous solution
goes to 0 as t→ ∞.

Thus initial values have very little effect on the long-
term behaviour of solution if γ ̸= 0.

Note: The larger γ is, the faster the homogeneous
solution goes to 0 as t→ ∞.
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3.8: Fexternal ̸= 0

mu′′(t) + γu′(t) + ku(t) = Fexternal, m, γ, k ≥ 0

General solution: u(t) = c1ϕ1 + c2ϕ2 + ψ

where ϕ1, ϕ2 are homogeneous solutions and ψ is a
non-homogeneous solution.

NOTE if γ ̸= 0, then homogeneous solution
c1ϕ1 + c2ϕ2 goes to 0 as t→ ∞.

Thus if γ ̸= 0, then u(t) → ψ as t→ ∞.

No damping (γ = 0) example: u′′ + u = cos(t)

Step 1: Solve homogeneous u′′ + u = 0
r2 + 1 = 0 implies r = ±i

Homogeneous solution u(t) = c1cos(t) + c2sin(t)

Step 2: Find a non-homogeneous solution.

Guess u(t) =

Plug in plus lots of work implies A = 0 and B = 1
2

Thus general non-homogeneous solution:
u(t) = c1cos(t) + c2sin(t) +

1
2 tsin(t)
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No damping example u′′+u = cos(ωt) where ω ̸= 1.

Step 1: Solve homogeneous u′′ + u = 0
r2 + 1 = 0 implies r = ±i

Homogeneous solution u(t) = c1cos(t) + c2sin(t)

Step 2: Find a non-homogeneous solution.

Since ω ̸= 1, guess u(t) =
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Trig background:

cos(y∓x) = cos(x∓y) = cos(x)cos(y)±sin(x)sin(y)

cos(u) + cos(v) = 2cos(u+v
2 )cos(u−v

2 )

cos(u)− cos(v) = −2sin(u+v
2 )sin(u−v

2 )

sin(u) + sin(v) = 2sin(u+v
2 )cos(u−v

2 )

sin(u)−sin(v) = sin(u)+sin(−v) = 2sin(u−v
2 )cos(u+v

2 )

Derivation:

Let x = (u+v
2 ) and y = (u−v

2 )

cos(u) = cos((u+v
2 ) + (u−v

2 ))

= cos(u+v
2 )cos(u−v

2 )− sin(u+v
2 )sin(u−v

2 )

cos(v) = cos((u+v
2 )− (u−v

2 ))

= cos(u+v
2 )cos(u−v

2 ) + sin(u+v
2 )sin(u−v

2 )

Ex: u(t) = cos(t) + cos(3t) =

Graph:
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Example with damping:

u′′ + γu′ + u = cos(ωt) where γ is small.
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