Solve $y^{\prime \prime}-4 y^{\prime}-5 y=4 \sin (3 t), \quad y(0)=6, y^{\prime}(0)=7$.
1.) Find the general solution to $y^{\prime \prime}-4 y^{\prime}-5 y=0$:

Guess $y=e^{r t}$ for HOMOGENEOUS equation:
$y^{\prime}=r e^{r t}, y^{\prime}=r^{2} e^{r t}$
$y^{\prime \prime}-4 y^{\prime}-5 y=0$
$r^{2} e^{r t}-4 r e^{r t}-5 e^{r t}=0$
$e^{r t}\left(r^{2}-4 r-5\right)=0$
$e^{r t} \neq 0$, thus can divide both sides by $e^{r t}$:

$$
r^{2}-4 r-5=0
$$

$(r+1)(r-5)=0$. Thus $r=-1,5$.
Thus $y=e^{-t}$ and $y=e^{5 t}$ are both solutions to HOMOGENEOUS equation.

Thus the general solution to the 2nd order linear HOMOGENEOU equation is

$$
y=c_{1} e^{-t}+c_{2} e^{5 t}
$$

2.) Find a solution to $a y^{\prime \prime}+b y^{\prime}+c y=4 \sin (3 t)$:

Guess $y=A \sin (3 t)+B \cos (3 t)$
$y^{\prime}=3 A \cos (3 t)-3 B \sin (3 t)$
$y^{\prime \prime}=-9 A \sin (3 t)-9 B \cos (3 t)$
$y^{\prime \prime}-4 y^{\prime}-5 y=4 \sin (3 t)$

$-9 A \sin (3 t)$	-	$9 B \cos (3 t)$
$12 B \sin (3 t)$	-	$12 A \cos (3 t)$
$-5 A \sin (3 t)$	-	$5 \cos (3 t)$

$(12 B-14 A) \sin (3 t) \quad-\quad(-14 B-12 A) \cos (3 t)=4 \sin (3 t)$
Since $\{\sin (3 t), \cos (3 t)\}$ is a linearly independent set:
$12 B-14 A=4$ and $-14 B-12 A=0$
Thus $A=-\frac{14}{12} B=-\frac{7}{6} B$ and
$12 B-14\left(-\frac{7}{6} B\right)=12 B+7\left(\frac{7}{3} B\right)=\frac{36+49}{3} B=\frac{85}{3} B=4$
Thus $B=4\left(\frac{3}{85}\right)=\frac{12}{85}$ and $A=-\frac{7}{6} B=-\frac{7}{6}\left(\frac{12}{85}\right)=-\frac{14}{85}$
Thus $y=\left(-\frac{14}{85}\right) \sin (3 t)+\frac{12}{85} \cos (3 t)$ is one solution to the nonhomogeneous equation.

Thus the general solution to the 2 nd order linear nonhomogeneous equation is

$$
y=c_{1} e^{-t}+c_{2} e^{5 t}-\left(\frac{14}{85}\right) \sin (3 t)+\frac{12}{85} \cos (3 t)
$$

3.) If initial value problem:

Once general solution is known, can solve initial value problem (i.e., use initial conditions to find c_{1}, c_{2}).

NOTE: you must know the GENERAL solution to the ODE BEFORE you can solve for the initial values. The homogeneous solution and the one nonhomogeneous solution found in steps 1 and 2 above do NOT need to satisfy the initial values.

Solve $y^{\prime \prime}-4 y^{\prime}-5 y=4 \sin (3 t), \quad y(0)=6, y^{\prime}(0)=7$.
General solution: $y=c_{1} e^{-t}+c_{2} e^{5 t}-\left(\frac{14}{85}\right) \sin (3 t)+\frac{12}{85} \cos (3 t)$
Thus $y^{\prime}=-c_{1} e^{-t}+5 c_{2} e^{5 t}-\left(\frac{42}{85}\right) \cos (3 t)-\frac{36}{85} \sin (3 t)$
$y(0)=6: \quad 6=c_{1}+c_{2}+\frac{12}{85} \quad \frac{498}{85}=c_{1}+c_{2}$
$y^{\prime}(0)=7: \quad 7=-c_{1}+5 c_{2}-\frac{42}{85} \quad \frac{637}{85}=-c_{1}+5 c_{2}$
$6 c_{2}=\frac{498+637}{85}=\frac{1135}{85}=\frac{227}{17}$. Thus $c_{2}=\frac{227}{102}$.
$c_{1}=\frac{498}{85}-c_{2}=\frac{498}{85}-\frac{227}{102}=\frac{2988-1135}{510}=\frac{1853}{510}=\frac{109}{30}$

Thus $y=\left(\frac{109}{30}\right) e^{-t}+\left(\frac{227}{102}\right) e^{5 t}-\left(\frac{14}{85}\right) \sin (3 t)+\frac{12}{85} \cos (3 t)$.

Partial Check: $y(0)=\left(\frac{109}{30}\right)+\left(\frac{227}{102}\right)+\frac{12}{85}=6$.

$$
y^{\prime}(0)=-\frac{109}{30}+5\left(\frac{227}{102}\right)-\frac{42}{85}=7 .
$$

