Given: $y^{\prime}=f(t, y), y(0)=0 \quad$ Eqn $\left(^{*}\right)$
$f, \partial f / \partial y$ continuous $\forall(t, y) \in(-a, a) \times(-b, b)$. Then $y=\phi(t)$ is a solution to $\left(^{*}\right)$ iff
$\phi^{\prime}(t)=f(t, \phi(t)), \quad \phi(0)=0$ iff
$\int_{0}^{t} \phi^{\prime}(s) d s=\int_{0}^{t} f(s, \phi(s) d s, \quad \phi(0)=0$ iff
$\phi(t)=\phi(t)-\phi(0)=\int_{0}^{t} f(s, \phi(s) d s$
Thus $y=\phi(t)$ is a solution to $\left(^{*}\right)$ iff $\phi(t)=\int_{0}^{t} f(s, \phi(s) d s$
Construct ϕ using method of successive approximation - also called Picard's iteration method.

Let $\phi_{0}(t)=0$ (or the function of your choice)
Let $\phi_{1}(t)=\int_{0}^{t} f\left(s, \phi_{0}(s) d s\right.$
Let $\phi_{2}(t)=\int_{0}^{t} f\left(s, \phi_{1}(s) d s\right.$

Let $\phi_{n+1}(t)=\int_{0}^{t} f\left(s, \phi_{n}(s) d s\right.$
Let $\phi(t)=\lim _{n \rightarrow \infty} \phi_{n}(t)$

Some questions:
1.) Does $\phi_{n}(t)$ exist for all n ?
2.) Does sequence ϕ_{n} converge?
3.) Is $\phi(t)=\lim _{n \rightarrow \infty} \phi_{n}(t)$ a solution to (*).
4.) Is the solution unique.

Example: $y^{\prime}=t+2 y . \quad$ That is $f(t, y)=t+2 y$
Let $\phi_{0}(t)=0$
Let $\phi_{1}(t)=\int_{0}^{t} f(s, 0) d s=\int_{0}^{t}(s+2(0)) d s$

$$
=\int_{0}^{t} s d s=\left.\frac{s^{2}}{2}\right|_{0} ^{t}=\frac{t^{2}}{2}
$$

Let $\phi_{2}(t)=\int_{0}^{t} f\left(s, \phi_{1}(s)\right) d s=\int_{0}^{t} f\left(s, \frac{s^{2}}{2}\right) d s$

$$
=\int_{0}^{t}\left(s+2\left(\frac{s^{2}}{2}\right)\right) d s=\frac{t^{2}}{2}+\frac{t^{3}}{3}
$$

Let $\phi_{3}(t)=\int_{0}^{t} f\left(s, \phi_{2}(s)\right) d s=\int_{0}^{t} f\left(s, \frac{s^{2}}{2}+\frac{s^{3}}{3}\right) d s$

$$
\left.=\int_{0}^{t}\left(s+2 \frac{s^{2}}{2}+\frac{s^{3}}{3}\right)\right) d s=\frac{t^{2}}{2}+\frac{t^{3}}{3}+\frac{t^{4}}{6}
$$

See class notes.

