Section $2.4 \quad y^{\prime}=y^{1 / 3}$

Figure 2.4.1 from Elementary Differential Equations and Boundary Value
Problems, Eighth Edition by William E. Boyce and Richard C. DiPrima

$$
\begin{array}{r}
\text { Note IVP, } y^{\prime}=y^{\frac{1}{3}}, y\left(x_{0}\right)=0 \text { has an infinite number } \\
\text { of solutions, }
\end{array}
$$

while IVP, $y^{\prime}=y^{\frac{1}{3}}, y\left(x_{0}\right)=y_{0}$ where $y_{0} \neq 0$ has a unique solution.

Initial Value Problem: $y\left(t_{0}\right)=y_{0}$ Use initial value to solve for C .

Examples: No solution:

Ex 1: $y^{\prime}=y^{\prime}+1$
Ex 2: $\left(y^{\prime}\right)^{2}=-1$
Ex 3 (IVP): $\frac{d y}{d x}=y\left(1+\frac{1}{x}\right), y(0)=1$
$\int \frac{d y}{y}=\int\left(1+\frac{1}{x}\right) d x \quad$ implies $\quad \ln |y|=x+\ln |x|+C$
$|y|=e^{x+\ln |x|+C}=e^{x} e^{\ln |x|} e^{C}=C|x| e^{x}=C x e^{x}$
$y= \pm C x e^{x}$ implies $y=C x e^{x}$
$y(0)=1: \quad 1=C(0) e^{0}=0$ implies
IVP $\frac{d y}{d x}=y\left(1+\frac{1}{x}\right), y(0)=1$ has no solution.
http://www.wolframalpha.com
slope field: $\{1, y(1+1 / x)\} / \operatorname{sqrt}(1+y \wedge 2(1+1 / x) \wedge 2)$

Special cases:
Suppose f is cont. on (a, b) and the point $t_{0} \in(a, b)$, Solve IVP: $\frac{d y}{d t}=f(t), y\left(t_{0}\right)=y_{0}$

$$
\begin{aligned}
d y & =f(t) d t \\
\int d y & =\int f(t) d t
\end{aligned}
$$

$y=F(t)+C$ where F is any anti-derivative of F.
Initial Value Problem (IVP): $y\left(t_{0}\right)=y_{0}$

$$
y_{0}=F\left(t_{0}\right)+C \text { implies } C=y_{0}-F\left(t_{0}\right)
$$

Hence unique solution (if domain connected) to IVP:

$$
y=F(t)+y_{0}-F\left(t_{0}\right)
$$

First order linear differential equation:

Thm 2.4.1: If p and g are continuous on (a, b) and the point $t_{0} \in(a, b)$, then there exists a unique funaction $y=\phi(t)$ defined on (a, b) that satisfies the following initial value problem:

$$
y^{\prime}+p(t) y=g(t), \quad y\left(t_{0}\right)=y_{0}
$$

More general case (but still need hypothesis)
Thm 2.4.2: Suppose the functions
$z=f(t, y)$ and $z=\frac{\partial f}{\partial y}(t, y)$ are continuous on $(a, b) \times(c, d)$ and the point $\left(t_{0}, y_{0}\right) \in(a, b) \times(c, d)$,
then there exists an interval $\left(t_{0}-h, t_{0}+h\right) \subset(a, b)$ such that there exists a unique function $y=\phi(t)$ defined on $\left(t_{0}-h, t_{0}+h\right)$ that satisfies the following initial value problem:

$$
y^{\prime}=f(t, y), \quad y\left(t_{0}\right)=y_{0}
$$

If possible without solving, determine where the solution exists for the following initial value problems:

