2.3: Modeling with differential equations.

Suppose salty water enters and leaves a tank at a rate of 2 liters/minute.

Suppose also that the salt concentration of the water entering the tank varies with respect to time according to $Q(t) \cdot t \sin \left(t^{2}\right) \mathrm{g} /$ liters where $Q(t)=$ amount of salt in tank in grams. (Note: this is not realistic). If the tank contains 4 liters of water and initially contains 5 g of salt, find a formula for the amount of salt in the tank after t minutes.

Let $Q(t)=$ amount of salt in tank in grams.
Note $Q(0)=5 \mathrm{~g}$
rate in $=(2$ liters $/ \min)\left(Q(t) \cdot t \sin \left(t^{2}\right) \mathrm{g} /\right.$ liters $)$

$$
=2 Q t \sin \left(t^{2}\right) \mathrm{g} / \mathrm{min}
$$

rate out $=(2$ liters $/ \min)\left(\frac{Q(t) g}{4 \text { liters }}\right)=\frac{Q}{2} \mathrm{~g} / \mathrm{min}$
$\frac{d Q}{d t}=$ rate in - rate out $=2 Q \operatorname{tsin}\left(t^{2}\right)-\frac{Q}{2}$
$\frac{d Q}{d t}=Q\left(2 t \sin \left(t^{2}\right)-\frac{1}{2}\right)$
This is a first order linear ODE. It is also a separable ODE. Thus can use either 2.1 or 2.2 methods.

Using the easier 2.2:
$\int \frac{d Q}{Q}=\int\left(2 t \sin \left(t^{2}\right)-\frac{1}{2}\right) d t=\int 2 t \sin \left(t^{2}\right) d t-\int \frac{1}{2} d t$
Let $u=t^{2}, d u=2 t d t$
$\ln |Q|=\int \sin (u) d u-\frac{t}{2}=-\cos (u)-\frac{t}{2}+C$

$$
=-\cos \left(t^{2}\right)-\frac{t}{2}+C
$$

$|Q|=e^{-\cos \left(t^{2}\right)-\frac{t}{2}+C}=e^{C} e^{-\cos \left(t^{2}\right)-\frac{t}{2}}$
$Q=C e^{-\cos \left(t^{2}\right)-\frac{t}{2}}$
$Q(0)=5: \quad 5=C e^{-1-0}=C e^{-1}$. Thus $C=5 e$
Thus $Q(t)=5 e \cdot e^{-\cos \left(t^{2}\right)-\frac{t}{2}}$

$$
\text { Thus } Q(t)=5 e^{-\cos \left(t^{2}\right)-\frac{t}{2}+1}
$$

Long-term behaviour:
$Q(t)=5\left(e^{-\cos \left(t^{2}\right)}\right)\left(e^{\frac{-t}{2}}\right) e$
As $t \rightarrow \infty, e^{\frac{-t}{2}} \rightarrow 0$, while $5\left(e^{-\cos \left(t^{2}\right)}\right) e$ are finite.
Thus as $t \rightarrow \infty, Q(t) \rightarrow 0$.

