Lecture 1: The Euler characteristic

of a series of preparatory lectures for the Fall 2013 online course MATH:7450 (22M:305) Topics in Topology: Scientific and Engineering Applications of Algebraic Topology

Target Audience: Anyone interested in **topological data analysis** including graduate students, faculty, industrial researchers in bioinformatics, biology, computer science, cosmology, engineering, imaging, mathematics, neurology, physics, statistics, etc.

Isabel K. Darcy

Mathematics Department/Applied Mathematical & Computational Sciences University of Iowa

http://www.math.uiowa.edu/~idarcy/AppliedTopology.html

Counting

Example:

7 vertices,9 edges,2 faces.

3 vertices, 3 edges, 1 face. 6 vertices, 9 edges, 4 faces.

The formula: Euler characteristic

Euler characteristic (simple form):

 $\boldsymbol{\chi}$ = number of vertices – number of edges + number of faces

Or in short-hand,

x = |V| - |E| + |F|

where V = set of vertices E = set of edges F = set of faces

& the notation |X| = the number of elements in the set X.

Video Insert illustrating topology

Note a coffee cup is topologically equivalent to a donut

gif from https://en.wikipedia.org/wiki/ File:Mug_and_Torus_morph.gif

That means that if two objects are topologically the same, they have the same Euler characteristic.

x=1

x=1

x=1

x=1

x=1

That means that if two objects are topologically the same, they have the same Euler characteristic.

Example:

Euler characteristic		
2	sphere = { x in R ³ : x = 1 }	
1	ball ={xin R ³ : x ≤1}	
	disk = { x in R^2 : x ≤ 1 }	
	$= \{ x \text{ in } R : x \le 1 \}$	••

That means that if two objects are topologically the same, they have the same Euler characteristic.

But objects with the same Euler characteristic need not be topologically equivalent. \checkmark

Let *R* be a subset of *X* A *deformation retrac*t of *X* onto *R* is a continuous map $F: X \times [0, 1] \rightarrow X$, $F(x, t) = f_t(x)$ such that f_0 is the identity map, $f_1(X) = R$, and $f_t(r) = r$ for all *r* in *R*.

If R is a deformation retract of X, then $\chi(R) = \chi(X)$.

Let *R* be a subset of *X*

- A *deformation retract* of X onto R is a
- continuous map $F: X \times [0, 1] \rightarrow X, F(x, t) = f_t(x)$

such that f_0 is the identity map,

Mobius band and torus images from https://en.wikipedia.org/wiki/Euler characteristic

2-dimensional orientable surface without boundary	
	2
	0
	-2
	-4
ī	-4

Graphs: Identifying Trees

Defn: A *tree* is a connected graph that does not contain a cycle

x = 2

x = |V| - |E| + |F|

x = 2 - 1 = 1

x = 3 - 1 = 2

x = |V| - |E| + |F|

x = 3 - 2 = 1

x = |V| - |E| + |F|

x = 4 - 3 = 1

x = 5 - 4 = 1

x = |V| - |E| + |F|

x = |V| - |E| + |F|

