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The unknotting number of a knot is the minimal number of crossing changes needed to convert
the knot into the unknot where the minimum is taken over all possible diagrams of the knot. For
example, the minimal diagram of the knot 108 requires 3 crossing changes in order to change it to
the unknot. Thus, by looking only at the minimal diagram of 108, it is clear that u(108) ≤ 3 (figure
1). Nakanishi [5] and Bleiler [2] proved that u(108) = 2. They found a non-minimal diagram of the
knot 108 in which two crossing changes suffice to obtain the unknot (figure 2). Lower bounds on
unknotting number can be found by looking at how knot invariants are affected by crossing changes.
Nakanishi [5] and Bleiler [2] used signature to prove that u(108) = 2.

Figure 1. Minimal dia-
gram of knot 108

Figure 2. A non-minimal dia-
gram of knot 108

Bernhard [1] noticed that one can determine that u(108) = 2 by using a sequence of crossing
changes within minimal diagrams and ambient isotopies as shown in figure. A crossing change within
the minimal diagram of 108 results in the knot 62. We then use an ambient isotopy to change this
non-minimal diagram of 62 to a minimal diagram. The unknot can then be obtained by changing
one crossing within the minimal diagram of 62. Bernhard hypothesized that the unknotting number
of a knot could be determined by only looking at minimal diagrams by using ambient isotopies
between crossing changes.

If we remove the condition that only minimal diagrams are used, the unknotting number of
a knot can be found by using a sequence of crossing changes (in both minimal and non-minimal
diagrams) and ambient isotopies. In the original definition of unknotting number we were restricted
to doing all the crossing changes in a single diagram and then minimizing over all diagrams. It
is well known that alternating between crossing changes and ambient isotopies is an equivalent
method for finding the unknotting number. To see this we can transform a knot into the unknot
by a sequence of crossing changes and ambient isotopies, but whenever we do a crossing change we
tie an imaginary string between the segments of the knot that pass through each other. Once we
obtain the unknot, we shorten all the imaginary strings and project onto 2-dimensions. Changing
all the crossings with the imaginary strings results in a projection of the original knot in which all
the crossing changes needed to transform the knot to the unknot can be seen.

A generalization of the unknotting number is the crossing change distance between knots, d(K1, K2) =
the minimum number of crossing changes needed to change K1 into K2. In [3], it was shown that
non-minimal diagrams are required in order to calculate d(K1, K2). For example, d2(51, 52) = 1,
but the crossing change cannot be seen in either the minimal diagram of 51 or 52 (see figure 3).
However, Kohn [4] proved that only minimal diagrams are needed to determine if a 4-plat knot has
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unknotting number 1. He similarly proved that only minimal diagrams are needed to determine if
a 4-plat link has crossing change distance one to the unlink of 2-components.

When non-minimal diagrams are needed is also a question posed by the biologist Andrzej Stasiak.
He studies a class of proteins called topoisomerases. These proteins will perform crossing changes
on knotted circular DNA molecules. The crossing change distance can be used to determine the
minimum number of times a topoisomerase performs a crossing change in order to change one
knotted DNA configuration into a different knotted DNA configuration. Thus, Dr. Stasiak wished
to know if the crossing changes could always be seen within minimal diagrams or if their were any
non-obvious crossing changes.

25   = S(7, 3) = (2, 2, 1)

(5-2, -2, 2) = (3, -2, 2)(5-2, 0, 2) = (5)

5   = S(5,1) = (5) 1

crossing change

Figure 3. d2(51, 52) = 1

In Theorem 1 we will determine exactly when a non-minimal diagram is needed to change one
knot/link into another knot/link when both knots/links belong to the 4-plat family. Four-plats (also
called 2-bridge or rational) are knots or 2-component links of the form shown in figure 4. Note that
51, 52, 108 and all prime knots with less than 8 crossings are 4-plats. The 4-plat < c1, ..., cn > can
also be denoted by S(a, b) where a

b
= c1 + 1

c2+...
1

cn

. Two 4-plats, S(a1, b1) and S(a2, b2), a1a2 ≥ 0,

are equivalent if and only if a1 = a2 and b1b2
±1 = 1 mod a1.

c c

c

c
1

2

3 n

n-1c

Figure 4. 4-plat < c1, ..., cn >

The following seven lemmas will be used to prove theorem 1.
1.) [3] If S(u, v) = < c1, ..., cn > and d(S(a, b), S(u, v)) = 1, then

S(a, b) =< cn, ..., c1 + a1, ...ak,±2,−ak, ...,−a1 >, where k is odd and one of the following holds:
i.) a1 ≥ 0 and ai > 0 for all i > 1.
ii.) a1 ≤ 0 and ai < 0 for all i > 1.
iii.) k = 3 and (a1, a2, a3) = (0, 1,−1).

(can also take |c1| ≥ 2 or can take n to be even or odd.)
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2.) [] A reduced alternating diagram is minimal. Hence < c1, ..., cn > is minimal if c1 6= 0, cn 6= 0
and ci ≥ 0 for all i or ci ≤ 0 for all i.

3.) < c1, ..., cn,±1 >=< c1, ..., cn ± 1 >

4.) < c1, ..., ci−1, 0, ci+1, ..., cn >=< c1, ..., ci−1 + ci+1, ..., cn >

5.) < c1, ..., cn−1, cn, 0 >=< c1, ..., cn−1 >

6.) < c1, ..., cn > = < cn, ..., c1 >?
7.) [Kohn] < c1, ..., ci−1, ci, ci+1, ..., cn >=< c1, ..., ci−1 − 1, 1,−ci − 1,−ci+1, ...,−cn >

The proof consists of taking S(u, v) =< cn, ..., c1 + a1, ...ak,±2,−ak, ...,−a1 > and changing this
projection into a minimal projection of the form in lemma 2 by using the operations in lemmas 3
– 7. Unfortunately many cases and subcases result. Hence a program was written to check all the
cases and output the results in latex. A portion of the output is included below. The entire proof
and/or program is available at www.math.uiowa.edu/∼idarcy.

Let cr(K) denote the minimal crossing number of K.

Theorem.Suppose d(S(a, b), S(u, v)) = 1 and cr(S(a, b) ≥ cr(S(u, v)), then if a non-minimal di-

agram is needed to see the crossing change, cr(S(a, b)) = cr(S(u, v)). In this case if S(u, v) =
< c1, ..., cn >, then S(a, b) has one of the following forms:

S(a, b) =< cn, ..., c1 + 0, 2, 0 >= S(u, v)
etc.
Proof:
From the continued fraction expansion of u

v
, we see that S(u, v) has a minimal diagram of the

form < c1, ..., cn > where ci ≥ 0 for all i or ci ≤ 0 for all i. By lemmas 3 - 6, we can take |ci| > 0
for all i and |cn| > 1 if n > 1.

Case 1: Suppose S(u, v) =< c1, ..., cn > where ci > 0 for all i and cn > 1 if n > 1 (can also take
(c1 > 1 if needed).

By lemma 1, S(a, b) =< cn, ..., c1 + a1, ...ak,±2,−ak, ...,−a1 >, where k is odd and one of the
following holds:

i.) a1 ≥ 0 and ai > 0 for all i > 1.
ii.) a1 ≤ 0 and ai < 0 for all i > 1.
iii.) k = 3 and (a1, a2, a3) = (0, 1,−1).

Case 1i: Suppose a1 ≥ 0 and ai > 0 for all i > 1

Case 1iA: S(a, b) = < cn, ..., c1 + a1, ..., ak, 2,−ak, ...,−a1 >

S(a, b) = < cn, ..., c1 +a1, ..., ak, 2,−ak, ...,−a1 > = < cn, ..., c1 +a1, ..., ak, 2−1, 1, ak−1, ..., a1 >.
Note < cn, ..., c1 + a1, ..., ak, 2 − 1, 1, ak − 1, ..., a1 > is a minimal diagram with more crossings

than S(u, v) if k > 1 or ak > 1.
Note also that changing 2 − 1 = 1 to -1 (i.e. changing a crossing) in this diagram results in

S(u, v):
< cn, ..., c1+a1, ..., ak,−1, 1, ak−1, ..., a1 > = < cn, ..., c1+a1, ..., ak−1, 1, 0,−1,−ak+1, ...,−a1 >

=< cn, ..., c1 + a1, ..., ak − 1, 0,−ak + 1, ...,−a1 > =< cn, ..., c1 + 0 > =< cn, ..., c1 >= S(u, v)

Case 1iAa) k = 1, ak = 1.
S(a, b) =< cn, ..., c1 + a1, ..., ak, 2,−ak, ...,−a1 > = < cn, ..., c1 + 1, 2,−1 > = < cn, ..., c1 + 1, 2 −

1, 1, 0 > = < cn, ..., c1 + 1, 2 − 1 > is a minimal diagram with more crossings than S(u, v).
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Note also that changing 2 − 1 = 1 to -1 (i.e. changing a crossing) in this diagram results in
S(u, v):

< cn, ..., c1 + 1,−1 > = < cn, ..., c1, 1, 0 > = < cn, ..., c1 >= S(u, v)

Case 1iAb) k = 1, ak = 0.
S(a, b) =< cn, ..., c1 + a1, ..., ak, 2,−ak, ...,−a1 > =< cn, ..., c1 +0, 2, 0 > =< cn, ..., c1 >= S(u, v).

Hence S(a, b) and S(u, v) have the same number of crossings.
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