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Abstract. A tangle consists of strings properly embedded in a 3-dimensional ball.
Tangles have been used to model protein-bound DNA. The protein is represented by
the 3D ball and the protein-bound DNA is represented by the strings embedded in the
3D ball. We review tangle analysis of protein-DNA complexes involving three or four
segments of DNA.
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1. Introduction. An n-string tangle is a three dimensional ball with
n-strings properly embedded in it. Tangles were studied by Conway in
the 1960’s [3]. In the 1980’s, Ernst and Sumners introduced a mathemat-
ical tangle model for protein-bound DNA complexes [8]. In this model,
the protein is modeled by a three dimensional ball and the protein-bound
DNA is modeled by strings. They used a 2-string tangle model to analyze
experimental results for Tn3 resolvase and phage λ integrase.

This work was motivated by Nick Cozzarelli [7, 16, 19, 21]. Some
proteins can break and rejoin DNA segments and will knot circular DNA
molecules. The knot types of the products can be used to determine in-
formation regarding how these proteins act. Nick Cozzarelli also used such
proteins to study other protein-DNA complexes [13]. Type II topoiso-
merases will knot circular DNA by cutting the DNA, allowing a segment
of DNA to pass through the break before resealing the DNA. In order to
study the protein 13S condensin, DNA was first incubated with 13S con-
densin allowing the condensin to bind the DNA. Topoisomerase was then
added. A spectrum of knots resulted which was different than that when
topoisomerase acts on DNA in the absence of condensin. The difference in
the knot spectrum in the presence versus absence of condensin was used to
determine the manner in which 13S condensin is bound to DNA.

Pathania, Jayaram and Harshey extended these methods to derive the
number of DNA crossings trapped in an unknown protein-DNA complex
involving multiple DNA segments [15]. This methodology, called difference
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topology, was used to determine the topological structure within the Mu
protein complex, which consists of three DNA segments containing five
crossings. Since Mu binds DNA sequences at 3 sites, the Mu protein DNA
complex can be modeled by a 3-string tangle. 3-string tangle analysis is
much more complicated than 2-string tangle analysis. The experimental
results in [15] were mathematically [6] and computationally [5] analyzed
by using a 3-string tangle model. We address a 4-string tangle model for a
protein-DNA complex which binds four DNA segments.

In section 2, we introduce basic concepts of DNA recombination. We
focus on site-specific recombination since this is a very important concept
for understanding difference topology. In section 3, we introduce tangle
analysis of protein-DNA complexes. In section 4, we explain the method-
ology of difference topology and its application to a Mu protein-DNA com-
plex. In section 5, we summarize the 3-string tangle analysis of the Mu
protein-DNA complex in [6]. Finally, in section 6, we introduce a 4-string
tangle model for a protein which binds four DNA segments. We conclude
that a 4-string tangle (with small number of crossings) which satisfies cer-
tain experimental conditions must be R-standard.

2. DNA Recombination. DNA recombination refers to a process
in which DNA is rearranged within a genome. This is one of the biolog-
ical processes which can change topological properties of DNA. We are
interested in DNA recombination where two specific short DNA sequences
are exchanged. This process is called site-specific recombination and the
specific sequences are called target sites. This reaction requires specialized
proteins, called recombinases, to recognize these sites and to catalyze the
recombination reaction at these sites.

Site-specific recombination can result in either the inversion or dele-
tion of a DNA segment. As one can see from Figure 1(a), if the orientation
of target sites are opposite to one another (inverted repeat), then recombi-
nation leads to the inversion of the DNA segment between the two target
sites. On the other hand, if the orientation of target sites are the same
with respect to one another (directed repeat), then recombination leads to
the deletion of the DNA segment between the two target sites, see Figure
1(b).

Note that the number of components is the same after inversion. But
it is different after deletion, since the DNA sequence between the two target
sites are deleted from the original DNA sequences. In particular, when the
initial DNA is circular, inversion results in a knot and deletion results in a
link as one can see from the following example.

Cre is a site-specific recombinases. The target sites of Cre are called
loxP. Cre can catalyzes both DNA inversion and deletion. The recombi-
nation products depend on the relative orientation of the loxP sites, the
target sites of Cre. When the DNA is circular, the products of DNA inver-
sion and deletion by Cre are knots and catenanes, respectively (see Figure
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Fig. 1. (a.) Inversion. (b.) Deletion.

This figure is redrawn from http://www.mun.ca/biochem/courses/3107/
Lectures/Topics/Site-specific-Recomb.html.
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Fig. 2. Cre recombination.

3. DNA Topology and the Tangle Model. An n-string tangle
is a three dimensional ball with n-strings properly embedded in it. The
tangle model of a protein-DNA complex was developed by C. Ernst and
D. W. Sumners [8]. This model assumes the protein is a three dimensional
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ball and the protein-bound DNA are strings embedded inside the ball. See
Figure 3.

Fig. 3. AFM image of a Cre synaptic complex formed with circular DNA [18] and
a corresponding 2-string tangle model.

Examples of 3-string tangles are given in Figure 4. A rational tangles is
ambient isotopic to a tangle which has no crossings if we allow the boundary
of the three ball to move. A tangle is rational if and only if its strings can
be pushed to lie on the boundary of the 3D ball so that no string crosses
over another string on the boundary of this ball. If the DNA wraps around
the protein “ball” so that the DNA does not cross itself on the boundary
of this protein ball, then the tangle modeling it is rational. Also, in nature,
circular DNA is supercoiled. Protein-bound DNA is also often supercoiled.
Hence rational tangles are generally believed to be the most biologically
reasonable models for protein-bound DNA.

Example 1. Figure 4 (a)∼(e) give examples of 3-string tangles.
Among those, (a), (c) and (d) are examples of rational 3-string tangles.

(d)(b) (c)   (a)

Fig. 4. Examples of 3-string tangles

The original tangle model was applied to proteins which bind two seg-
ments of DNA and which will break and rejoin segments of DNA creating
knotted DNA. For a review of 2-string tangle analysis, see for example
[8, 9, 17, 4]. Software has been developed to solve n-string tangle equa-
tions [5]. This software was used to search through all tangles up through
8 crossings which satisfy the experimental results of [5]. But computa-
tional software which can only solve one system of equations at a time
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lacks the ability mathematical theories can provide for analyzing real and
hypothetical experiments.

In the next section we will discuss the biological model for a Mu
protein-DNA complex given in [15], while in section 5 we will summarize
the mathematical tangle analysis given in [6].

4. Difference Topology and Its Application to Mu. DNA trans-
position results in the movement of a DNA segment from one location to
another in a genome (http://research.utu.fi/celgenmol/molepid/
savilahti.html). Bacteriophage Mu is a virus which uses transposition effi-
ciently to replicate its DNA. During the transposition process, Mu proteins
bind to 3 target sites including an enhancer sequence and two Mu ends
(attL and attR) (see Figure 5). The enhancer sequence will be denoted by
E, the attL site by L and the attR site by R. The protein-DNA complex
consisting of Mu proteins along with these three DNA sequences is called
the transpososome. The structure of the transpososome is very important
for understanding the transposition pathway.

Fig. 5. Mu transposition. Courtesy: Pathania el al.[23]

The reaction pathway shown in Figure 6 was the model before the
structure of the transpososome was determined in [15]. The new reaction
pathway is shown in Figure 5. Note that in the older model, since there
was no information available regarding the DNA shape bound by Mu, a
very simple structure was assumed. The protein-bound DNA conformation
in Figure 5, determined via difference topology, can be used to determine
what DNA sequences are likely to be close to each other and therefore may
interact [15]. Difference topology was also used to detect a new interme-
diate (denoted by ER in Figure 5) in the reaction pathway [14, 10, 23].
Difference topology was also used to investigate the role of supercoiling
[22]. For additional applications of difference topology see [11].

Pathania, Jayaram and Harshey used Cre inversion and deletion to
determine the topological structure of DNA within the Mu transpososome
[15]. If Cre acts on unknotted DNA not bound by any proteins except for
Cre, then the main products of Cre inversion and deletion are unknots and
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Fig. 6. An older model of Mu transposition. Courtesy: Pathania el al.[15]

unlinks, respectively. If, however, a protein complex such as Mu binds the
DNA before Cre acts, the products can be more complicated. This differ-
ence in products was used in [15] to determine the topological conformation
of the DNA bound by Mu. This methodology is called difference topology.

Pathania et al. first performed Cre inversion with two loxP sites lying
on either side of E, isolating this site from L and R. In Figure 7 (a), the
loxP sites are inversely repeated. Cre cuts these target sites and changes
the topology of the DNA before resealing it again. The product topology
in this case was a three noded knot. Those three crossings resulted from
E crossing R and L three times. Note that the crossings between R and L
can be untwisted and thus have no affect on the topology of the product.
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Fig. 7. Cre recombination on the DNA-Mu protein complex.

If the loxP sites are placed on the loops indicated in Figure 7, but
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directly repeated instead of inversely repeated, than an extra crossing not
bound by either Mu or Cre is necessary to properly orient the loxP sites
within the Cre-DNA complex. In this case the product of Cre recombina-
tion is a 4-crossing link. Note that this product has one more crossing than
the product when the loxP sites were placed on the same pair of loops, but
in inverse orientation. There are three pairs of loops on which to place the
loxP sites. In each case the number of crossings in the product differed by
one when comparing inversely repeated versus directly repeated loxP sites
on the same pair of loops. It was assumed that the smaller crossing product
corresponded to the tangle equation where no extra crossing is needed to
properly orient the loxP sites within the Cre-DNA complex. The equations
corresponding to the smaller crossing product when comparing loxP sites
on the same pair of loops is shown in Figures 8a, 9a. In Figure 8a, the
solution found in [15] is shown while Figure 9a shows the equations where
the tangle corresponding to the Mu transpososome is unknown. One can
prove that the solution set for T to the system of three equations in Figure
9a is the same as the solution set for T if all six experiments are considered
[5, 6].

To determine the number of DNA crossings within the Mu transposo-
some, we are interested in how many crossings are between E and R, R
and L, L and E. Note that the protein-bound DNA conformation shown in
Figure 8 consists of supercoiled DNA with three branches: one branch con-
tains one crossing while the other two branches each contain two crossing.
The solution found in [15] was obtained by assuming the protein-bound
DNA conformation is a 3-branched supercoiled structure. Let x be the
number of crossings between E and R, y the number of crossing between
R and L, and z the number of crossings between L and E. If the DNA
conformation bound by Mu is supercoiled with three branches, then x, y, z

represent the number of crossings in each of the three branches. In this
case, the equations in Figure 9a correspond to the equations x + z = 3,
x + y = 3 and y + z = 4. Since we have three unknown variables and three
linear equations, we can easily solve this linear system. The solution is that
x = 1, y = 2, and z = 2. This implies that there is one crossing between E
and R, two crossings between R and L, and two crossings between L and
E. Thus if the DNA conformation bound by Mu is supercoiled with three
branches, then the Mu transpososome has the five crossing configuration
shown in Figure 9b [15].

5. 3-String Tangle Analysis. Mathematically, the Mu proteins can
be modeled by a three dimensional ball and the three DNA segments can
be modeled by 3 strings in the ball. Pathania et al. found a solution to the
system of equations in Figure 9a in which the DNA bound by Mu consists
of supercoiled DNA with 3 branches and 5 crossings ([15], see section 4).
Pathania et al.’s experimental data [15] was mathematically analyzed by
using 3-string tangle analysis [6] without the assumption that the tangle T
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Fig. 8. Tangle model of Mu transpososome.

represents supercoiled DNA with three branches. If a tangle T satisfies all
the experimental data in [15], it can be a possible tangle model for the Mu
transpososome. By using tangle theory, the following result was obtained:

Proposition 5.1. Let T be a 3-string tangle which satisfies the system
of tangle equations in Figure 9 (a). If T can be freely isotopic to a projection
with less than 8 crossings, then T is the tangle in the Figure 9 (b).

(a)

R

(b)

E

L3−noded knot

3−noded knot

4−noded catenane

T T

T T

T T

Fig. 9. Tangle model of Mu transpososome.

Two tangles are freely isotopic to each other if they are ambient iso-
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topic allowing the boundary to move. For example, a rational tangle is
freely isotopic to a tangle with no crossings. Thus Proposition 5.1 implies
that the only rational tangle solution to the Figure 9 (a) equations is that
given in Figure 9 (b).

An additional experiment not described here was used in [6] to rule
out eight crossing solutions. The upper bound for the number of crossings
which could be bound by Mu is unknown. However, since the solution
found in [15] has five crossings, it is unlikely that a solution with more
than eight crossings could be a model for the Mu transpososome. Thus the
solution found in [15] is the only biologically reasonable solution.

6. 4-String Tangle Analysis. We do not currently have experimen-
tal data for a protein-DNA complex which binds four segments of DNA.
In fact, we are not aware of such a complex. However there are a number
of protein-DNA complexes, such as those involved in replicating and tran-
scribing DNA, in which multiple proteins interact with each other and with
multiple segments of DNA. Thus it is highly likely that protein-DNA com-
plexes exist involving four or more DNA segments. We address a model
for a protein complex which binds four DNA segments. Such a protein
complex bound to circular DNA is modeled by a 4-string tangle with four
loops outside of the tangle (Figure 10 (a)).

In nature, DNA is negatively supercoiled if it is circular or if the ends
are constrained (http://www.cbs.dtu.dk/staff/dave/roanoke/genetics980213
a.html). There are two kinds of DNA supercoiling, plectonemic and solenoi
-dal. Plectonemic supercoils are frequently branched [1]. Figure 10 (b)
shows an example of a branched supercoiled DNA-protein complex which
would be a biologically reasonable model for a protein-DNA complex in-
volving four segments of DNA. More generally, Figure 10 (c) shows a bi-
ologically natural tangle model of a 4-branched supercoiled DNA-protein
complex, where the ni’s are the number of right-handed half twists.

T

(a)
(c)(b)

n2

n1
n4

n5

n3

c 1

c3

c 4

c 2

Fig. 10. (a) A 4-string tangle model of a DNA-protein complex. (b), (c) Examples
of 4-string tangle model which are biologically relevant.

In this section, we would like to extend 3-string tangle analysis (sec-
tion 5) to 4-string tangle analysis based on difference topology. For Cre
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recombination, we need to put loxP sites on two of the outside loops. In
the 3-string tangle model, there are three choices for a pair of loops on
which to place Cre binding sites. On the other hand, in the 4-string tangle
model, there are six different possible pairs of loops. In each case, there
are two possible orientations for the Cre binding sites, directly or inversely
repeated. Thus there are twelve possible Cre reactions for the 4-string tan-
gle model (six different pairs of loops and two different orientation of loxP
sites for each pair). By the prediction of difference topology (section 4),
the crossing number of the knotted inversion product and the catenated
deletion product will differ by one when the Cre binding sites are placed
on the same pair of loops but in different orientations.

As we mentioned at the beginning of this section, Figure 10 (c) is
a biologically relevant 4-string tangle model. Assume two loxP sites are
located on loops c1 and c2 of Figure 10 (c). After Cre recombination, the
n1 and n2 crossings on two branches of the supercoiled DNA would be
trapped, but the n3, n4 and n5 crossings on the other three branches can
be removed. The result is a (2, n1 + n2)-torus knot if n1 + n2 is odd or
(2, n1 + n2)-torus link if n1 + n2 is even. For example, Cre recombination
assuming the tangle model Figure 10 (b) results in (2, 4)-torus link. See
Figure 11 (a). Similarly, if two loxP sites are located on loops c2 and c3,
Cre recombination results in the (2, 7)-torus knot as shown in Figure 11
(b). For convenience, Cre is placed on the left side and the 4-string tangle
is rotated 90◦ counterclockwise in Figure 11(b).

c2

c1

c3

c4

c1

c4

c2

c3

(b)

(2,4)−torus link

(2,7)−torus knot

(a)

Fig. 11. (a) If Cre acts on the loops c1 and c2, then Cre recombination for this
protein-bound DNA conformation results in a (2, 4)-torus link. (b) If the Cre binding
sites are placed on loops c2 and c3, then Cre recombination for this protein-bound DNA
conformation results in a (2, 7)-torus knot.

Hence if T is a tangle of the form shown in Figure 10 (c), Cre recom-
bination results in a (2, p)-torus knot if p is odd or a (2, p)-torus link if
p is even. Note that the products of Cre recombination in the Mu/Cre
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experiments were (2, p)-torus knots and links [15]. Thus for the 4-string
tangle model, we focus on equations where we assume the products are
(2, p)-torus knots and links. This process can be modeled by Figure 12.
In this figure , the tangle T represents a protein which binds to four DNA
segments. The dotted circle represents Cre. For convenience, Cre is placed
on the left side of T . T is rotated by 90◦ in (b) and (f), 180◦ in (c) and
(e), 270◦ in (d) counterclockwise. We can summarize all these assumptions
with Figure 12 and define a tangle satisfying these conditions a solution
tangle.

Definition 6.1. A solution tangle is a tangle T which is a solution to
the system of 12 difference topology equations where the products are (2, pi)
torus knots/links. Six of these equations are shown in Figure 12.

(a) 
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(d)

(e)

(f)
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=

=

=

=
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=

=

=

=

=

T

T

T

T

T
T

T

T

T

T

T

T

Fig. 12. A 4-string solution tangle. In (b)∼(d) and (f), T is rotated. The dotted
circle represents a Cre recombinases.

We will first discuss branched supercoiled DNA solutions. A 4-string
tangle model of a branched supercoiled DNA-complex can be represented
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by a weighted graph. For example, the 4-string tangle in Figure 10 (b) has
2 or 3 right handed half twists on each branch resulting in the graph shown
in Figure 13 (b).

Definition 6.2. A tangle of the form shown in Figure 13 (a) will be
called standard, where ni is the number of right-handed half twists. Note
that a 4-string standard tangle T can be represented by a weighted graph G,
where G is as in Figure 13(b). Call this graph G a standard graph.

Where

       (a) (b)

ni

i

=

if n > 0

if n < 0i

n2

n1
n4

n5

n3

n1

n2 n5

n4

n3

Fig. 13. (a) Standard tangle. (b) A weighted graph G representing a 4-string
standard tangle.

We will also address the possibility that a pair of supercoiled DNA
branches can be twisted. In other words, what if a tangle model is isotopic
to a standard tangle allowing boundary of the corresponding graph (see
Definition 6.2) to move?

Definition 6.3. A weighted graph GR is an R-standard graph if it
is isotopic to a standard graph G allowing the boundary of G to move. A
tangle T is R-standard if it corresponds to an R-standard graph GR.

Example 2. Examples of 4-string standard tangles are shown in Fig-
ure 14 (a), (b) and an example of a 4-string R-standard tangle is shown in
(c).

Example 3. Figure 15 (a) shows an example of a weighted graph GR

which represents the R-standard tangle T in Figure 15 (c).

By extending 3-string tangle analysis of [6] to 4-string tangles, we de-
termined that the biologically relevant solutions to the system of equations
in Figure 12 must be R-standard:

Theorem 6.1. [12] Suppose T is a 4-string tangle which has less
than 8 crossings up to free isotopy. If T is a solution tangle, then T is
R-standard.

In other words, if a 4-string tangle T satisfies all the equations of Figure
12 and has less than 8 crossings up to free isotopy, T can be represented
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(a) (b) (c)

Fig. 14. (a),(b) Examples of standard tangles; (c) Example of R-standard tangle.

= 

(a) (b)

GR v5
v6   T=

n4

n2

n1

n5
n3

n3

n5

n4

n2

n1

Fig. 15. An example of a weighted graph GR for an R-standard tangle T .

by an R-standard graph. Since all rational tangles are freely isotopic to a
tangle which has no crossings, we can find all rational solutions.

We start with the following definition:

Definition 6.4. Let GR be a graph which corresponds to an R-
standard tangle. There are two vertices in the interior of the ball and 4
vertices on the boundary of the ball. Let v1 = SW, v2 = NW, v3 =
NE, v4 = SE be the vertices on the boundary of the ball, and v5 and v6 be
the vertices in the interior of the ball. GR is (2, j)-branched if v5 connects
v2 = NW and vj for some 1 6 j 6 4, j 6= 2.

The vertex v5 can only be connected with (v1, v2) or (v2, v3) or
(v2, v4), hence there are 3 different (i, j) branchings (Figure 16). For
example, the graph GR in Figure 15 (a) is (2, 4)-branched. Note that
n5 = 0 if and only if GR is (i, j)-branched for all (i, j).

Each edge of GR represents a branch of a branched supercoiled DNA
molecule. This implies that an (i, j)-branched graph and a (k, l)-branched
graph represent different geometries of a DNA molecule when (i, j) 6= (k, l).

We will first focus on tangles of the form shown in Figure 17. Suppose
a tangle whose corresponding graph has the form shown in Figure 17 (a)
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Fig. 16. (a)(1,2)-branched; (b)(2,3)-branched; (c)(2,4)-branched weighted graph
for R-standard tangle.

n1

n2
n3

n5

n4

n2 n3

n4n1

n5

(a) (b) (c)

c 1

c 2
c 3

c4

c 1

c 2
c 3

c4

n2

n1
n4

n5

n3

c 1

c 2 c 3

c 4

Fig. 17. (a) Example of R-standard tangle model of a branched DNA-protein com-
plex corresponding to a weighted graph which is (a) (1,2)-branched; (b) (2,3)-branched;
(c) (2,4)-branched.

is a solution to the system of equations in Figure 12. Then we have the
equations in 6.1. The values p1, · · · , p6 in Figure 12 must be determined
experimentally. Our goal is to find n1, · · ·n6 in terms of the pi’s.

n1 + n2 = p1

n2 + n3 + n5 = p2

n3 + n4 = p3(6.1)

n1 + n4 + n5 = p4

n1 + n3 + n5 = p5

n2 + n4 + n5 = p6.

The solution to the system of equations 6.1 is the following:

n1 =
p1 + p4 − p6

2
, n2 =

p1 − p4 + p6

2
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n3 =
p2 + p3 − p6

2
, n4 =

−p2 + p3 − p6

2
(6.2)

n5 =
−p1 + p2 − p3 + p4

2
, p2 + p4 = p5 + p6.

We can solve similar equations for tangles corresponding to the graphs
in Figure 17 (b) and (c). The summary of the results are the following:

• The solution to the Figure 12 equations is the following if the
solution is of the form Figure 17 (b):

n1 =
−p3 + p4 + p5

2
, n2 =

p1 + p2 − p5

2

n3 =
−p1 + p2 + p5

2
, n4 =

p2 + p3 − p5

2
(6.3)

n5 =
p1 − p2 + p3 − p4

2
, p1 + p3 = p5 + p6.

• The solution to the Figure 12 equations is the following if the
solution is of the form Figure 17 (c):

n1 =
p1 − p2 + p5

2
, n2 =

p1 − p4 + p6

2

n3 =
−p1 + p2 + p5

2
, n4 =

−p1 + p4 + p6

2
(6.4)

n5 =
−p2 + p4 − p5 − p6

2
, p1 + p3 = p2 + p4.

Note that the ni must be integral. To have an integer solution set
{n1, · · · , n5}, all numerators of Equations 6.2, 6.3 and 6.4 should be even.
In fact, there are eight possible cases to have an integer solution set for
equation 6.2, shown in the following table.

p1 p2 p3 p4 p5 p6

1 even even even even even even
2 odd odd even even even odd
3 even odd even odd odd odd
4 odd even even odd odd even
5 even odd odd even odd even
6 odd even odd even odd odd
7 even even odd odd even odd
8 odd odd odd odd even even

Equations 6.3 and 6.4 have an integer solution set for the same eight
cases. Thus the different ways of branching can only be distinguished by
the last equation given in Equations 6.2, 6.3 and 6.4:

Lemma 6.1. The graph GR corresponding to an R-standard tangle can
only be branched in three different ways, (1,2), (2,3) or (2,4)-branched. The
(i, j) branching of a solution can be determined as follows:
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• If p2 + p4 = p5 + p6 holds, GR is (1,2)-branched.
• If p1 + p3 = p5 + p6 holds, GR is (2,3)-branched.
• If p1 + p3 = p2 + p4 holds, GR is (2,4)-branched.

In addition, n5 = 0 if and only if GR is (i, j)-branched for all (i, j).
We have only proved Lemma 6.1 for tangles corresponding to the

graphs shown in Figure 17. However, Lemma 6.1 can be extended to R-
standard tangles as discussed in the next section.

6.1. Discussion On Complicated Branched Solution Tangles.

We will now consider a more complicate branched solution tangle like that
in Figure 18.

Example 4. Let G be a graph which corresponds to the standard
graph in Figure 18(a). After doing one counterclockwise half twist of v1

and v4 and two clockwise half twists of v3 and v4 moving the boundary of
3-ball, one obtains the weighted graph GR (Figure 18 (b)). Then GR is the
weighted graph which corresponds to the R-standard tangle T in Figure 18
(b). Since v5 is connected to v2 = NW and v4, GR is (2,4)-branched.

SW=

NW= =NE

=SE SW= =SE

=NENW=

G = = 

(a) (b) (c)

GR

v1

v2
v3

v4

v5
v6

v1
v4

v3v2

v5
v6   T=

n1

n2 n5

n4

n3

n4

n2

n1

n5
n3

n3

n5

n4

n2

n1

c 1

c 2
c 3

c 4

Fig. 18. Example of R-standard tangle.

Let’s compare this example with the tangle in 17 (c), which we will call
T

′

. The link obtained from Cre recombination on c3 and c4 of T has positive
2 writhe which can be converted to four half twists as shown in Figure 19
[2]. Hence p3 = n3 + n4 + n5 + 4 for T while for T

′

, p3 = n3 + n4 + n5.
Similarly, p4 = n1 +n4 +n5 − 2 for T , while p4 = n1 + n4 +n5 for T

′

. The
remaining equations for T are identical to the equations for T

′

.
Note that a solution of the form T will satisfy the first five equations

in 6.4 if and only if a solution of the form T
′

satisfies these equations. This
is because writhe of a link diagram can be converted to an even number of
half twists. Thus, all numerators of Equations 6.2, 6.3 and 6.4 will still be
even after adding or subtracting an even number. Hence the last equation
in 6.4 determines if a tangle of the form T or T ′ can be a solution. For
more information see [12].
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n3

n4

n5

n3

n4

n5

Fig. 19. (a) A link obtained by doing Cre recombination in example 18 has writhe
two. (b) The writhe two can be converted to 4 half twists.
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