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On the Ergodic Theorem for Affine Actions on

Hilbert Space

Ionut Chifan∗ Thomas Sinclair†

Abstract

The note establishes a new weak mean ergodic theorem (Theorem A) for
1-cocycles associated to weakly mixing representations of amenable groups.

Introduction

In a groundbreaking paper [15], Shalom discovered deep connections between
the representation theory of an amenable group and aspects of its large-scale ge-
ometry. One motivation for this work, among others, was the development of
a “spectral” approach to Gromov’s celebrated theorem on the virtual nilpotency
of groups of polynomial growth [10] (see also [1, 7, 12, 13, 16]). More precisely,
Shalom established, Theorem 1.11 in [15], that if it could be shown that any group
of polynomial growth G possessed property HFD (see Definition 2.9), then this
would suffice to establish that G would have a finite-index subgroup with infi-
nite abelianization—the key step in Gromov’s proof which involves the use of
Hilbert’s 5th problem. As a means of establishing property HFD, Shalom conjec-
tured that for a group of polynomial growth, a sequence of almost fixed points
for any affine action with weakly mixing linear part could be obtained by averag-
ing the associated 1-cocycle over an appropriate subsequence of n-balls centered
at the identity: see section 6.7 in [15]. This conjecture was partly based on his
observation that for such groups a subsequence of the n-balls must possess a
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strong, quantitative Følner sequence. While Shalom did manage to show that
large classes of amenable groups, including polycyclic groups, do have property
HFD, the proofs are non-geometric, relying in the polycyclic case on deep results of
Delorme [6] about the structure of connected, solvable Lie groups. In their paper
[3], Cornulier, Tessera, and Valette investigated a generalized version of Shalom’s
notion of a strong, quantitative Følner sequence, which they called a controlled
Følner sequence. Further, they made a significant contribution to Shalom’s pro-
gram through their investigation of averaging properties of groups over con-
trolled Følner sequences, which has directly influenced the approach taken here.

By the results of Cornulier–Tessera–Valette [3] and Tessera [17, 18, 19] many
classes of amenable groups are known to possess controlled Følner sequences
(see Proposition 1.10 below), these classes roughly corresponding to the classes
of groups known to possess property HFD. This motivates the following question:

Question 0.1. Does every finitely generated group admitting a controlled Følner
sequence have property HFD of Shalom?

Statement of results

We prove a weak mean ergodic theorem for affine actions of finitely generated
amenable groups on Hilbert space. A sequence (µn) of regular Borel probability
measures on a countable discrete group G forms a Reiter sequence if
‖µn − g ∗ µn‖ → 0 for all g ∈ G, where g ∗ µn(h) = µn(g

−1h). A countable
discrete group is said to be amenable if it admits a Reiter sequence.

Theorem A (Weak Mean Ergodic Theorem). Let π : G → O(H) be an ergodic or-
thogonal representation of a finitely generated amenable group G, and let b : G → H be
a 1-cocycle associated to π. Let S be a finite symmetric generating set for G, and let | · |
denote the word length in S. If (µn) is a Reiter sequence for G, then

∫
1

|g|
b(g)dµn(g) → 0 (0.1)

in the weak topology on H. If π is weakly mixing, then

∫
1

|g|
|〈b(g), ξ〉| dµn(g) → 0 (0.2)

for all ξ ∈ H.

Note that while 1
|e|

is technically undefined, by convention it will be understood

to denote 0 throughout.
In the weak mixing case, Theorem A states that the 1-cocycle must be “almost

weakly sublinear” in the sense that for any ǫ > 0 and ξ ∈ H, the subset consist-
ing of all elements g ∈ G such that |〈b(g), ξ〉| ≥ ǫ|g| has measure 0 for all left
invariant means on G. We show in Theorem 2.4 below that that for a group admit-
ting a controlled Følner sequence (see Definition 1.7), for every “weakly sublinear”
1-cocycle (i.e., one for which for any ǫ > 0 and ξ ∈ H, the subset consisting of all
elements g ∈ G such that |〈b(g), ξ〉| ≥ ǫ|g| is finite) the associated affine action
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on Hilbert space admits a sequence of almost fixed points. Thus, the obstruction
to settling Question 0.1 in the positive is addressing the gap between “measure
zero” sets one hand and finite sets on the other. We note, that in the case of a
compact representation, almost weak sublinearity is equivalent weak sublinearity.
It seems plausible that through additional structural analysis on the 1-cocycle or
the group, one may be able to derive weak sublinearity in the general case and
close the gap.

Specializing Theorem A to the integers, if b : Z → H is a 1-cocycle, then b is
completely determined by ξ

.
= b(1), so that for n ≥ 1 we have

1
n b(n) = An(ξ) := 1

n

∑n−1
k=0 π(k)ξ: a similar formula holds for −n via the iden-

tity b(−n) = −π(−n)b(n). So, in this case the result reduces to the fact that
the Cesàro sums Cn(ξ, η) = 1

n

∑n
k=1〈Ak(ξ), η〉 and C′

n(ξ, η) = 1
n

∑n
k=1|〈Ak(ξ), η〉|

converge to 0 for all ξ, η ∈ H. In fact, the stronger summation holds for all
ergodic representations and is equivalent to the (weak) mean ergodic theorem of
von Neumann.

In fact, for the class of abelian groups, the above result gives a new, geometri-
cally flavored proof of the mean ergodic theorem in combination with the follow-
ing result.

Theorem B. Let G be finitely generated amenable group admitting a controlled Følner
sequence. Let π : G → O(H) be an orthogonal representation, and let b : G → H be a
1-cocycle associated to π. Suppose that

∫
1

|g|
〈b(g−1), ξ〉dµn(g) → 0 (0.3)

for all ξ ∈ H and all Reiter sequences (µn). Then the affine action G y
T H associated

to b admits a sequence of almost fixed points.

To see how this implies the mean ergodic theorem for Z, we point out that
by an observation of Cornulier–Tessera–Valette (Proposition 3.1 in [3]) a conse-
quence of G y

T H admitting almost fixed points is that

1

|g|
‖b(g)‖ → 0

as |g| → ∞; in other words, the 1-cocycle b has sublinear growth. In fact, sublinear-
ity of a 1-cocycle is actually equivalent in general to the mean ergodic theorem,
i.e., the statement that ∫

1

|g|
‖b(g)‖dµn(g) → 0

for all Reiter sequences (µn) (see Proposition 1.16).
The significance of averaging on the right rather than on the left in Theo-

rem B is that it allows one to conclude that the cocycle is weakly sublinear, i.e.,
1
|g|
b(g) → 0 in the weak topology, from which point averaging arguments over a

controlled Følner sequence produce the desired sequence of almost fixed points.
This key to this argument is the fact that g 7→ b(g) is a lipschitz function, i.e.,
‖b(gs) − b(g)‖ is uniformly bounded in g. Alas, this is not necessarily the case
for ‖b(sg) − b(g)‖ which again prevents us from settling Question 0.1.
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Remarks on the proofs

The paper is an application of the authors’ investigations into the “large scale”
properties of affine actions of groups on Hilbert space. Though the above results
are stated for affine actions, even in this case the proofs rely on a coarsening of
the notion of an affine action, the concept of an array, formalized by the authors
in [2]. The main novelty of this viewpoint is that it allows one to construct the
“absolute value” of a 1-cocycle b : G → H which lies in the G-invariant positive
cone V ⊂ H⊗H which allows one to naturally use the weak mixingness to derive
the stronger ergodic theorem in that case. Note that such a map cannot lie within
a uniformly bounded distance of an (unbounded) 1-cocycle, since the equation
b(g) = −πgb(g

−1) holds for all g ∈ G for any 1-cocycle b.

The notion of an array is best viewed from a geometric, rather than algebraic,
perspective. Indeed, a length function on a discrete group G may be viewed as
a positive array associated with the trivial representation. In general, an array
can be thought of as a Hilbert-space valued length function on G which is com-
patible with some orthogonal G-representation π. The presence of an array then
becomes a tool through which properties of the representation can be used to im-
pose large scale conditions on the group, and vice versa. For example, it is shown
in [2], Proposition 1.7.3, that a non-amenable group admitting a proper array into
its left-regular representation, e.g., non-elementary Gromov hyperbolic groups,
cannot be decomposed as a direct product of infinite groups. Turning to the topic
at hand, the presence of a controlled Følner sequence imposes a strong large-scale
“finite dimensionality” condition on the group G—for the case of weak polyno-
mial growth, a point already well made in [10]. Viewed in this light, the content
of Theorem B is that this forces any geometric realization of the group which is
uniformly distributed throughout an infinite-dimensional Hilbert space to be es-
sentially degenerate.

1 Geometry and Representation Theory

In this section we will introduce the main definitions and concepts used in the
sequel.

Notation 1.1. Let X be a set and let f, g : X → R≥0 be maps. We write f ≪ g if
there exists a finite set F ⊂ X and a constant C > 0 such that f(x) ≤ C · g(x) for all
x ∈ X \ F. We will write f . g if f ≪ g for a constant C ≤ 1.

1.1 Isometric actions on Hilbert space

Definition 1.2. An orthogonal representation π : G → O(H) is said to be ergodic if
for any ξ ∈ H we have that πg(ξ) = ξ for all g ∈ G if and only if ξ = 0, i.e., π has
no non-zero invariant vectors. The representation π is said to be weakly mixing
if the diagonal representation π⊗ π : G → O(H ⊗H) is ergodic. In particular
weakly mixing representations are ergodic.
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If π : G → O(H) is an orthogonal representation, a map b : G → H is said to
be a 1-cocycle associated to π if it satisfies the Leibniz identity

b(gh) = πg(b(h)) + b(g),

for all g,h ∈ G. It is essentially a consequence of the Mazur–Ulam theorem that
any isometric action G y

T H may be written as Tg(ξ) = πg(ξ) + b(g) for some
orthogonal representation π and an associated 1-cocycle b(g) and conversely. The
representation π is known as the linear part of T .

Definition 1.3. An isometric action G y
T H is said to admit almost fixed points if

there exists a sequence (ξn) of vectors in H such that

‖Tg(ξn) − ξn‖ → 0

for all g ∈ G.

Definition 1.4. We will say that a 1-cocycle b associated to an orthogonal repre-
sentation π : G → O(H) is almost inner if the associated affine isometric action
G y H admits almost fixed points.

1.2 Geometric group theory

Throughout the paper G will be a countable discrete group, often finitely gen-
erated. Recall that a length function | · | : G → R≥0 is a map satisfying: (1)
|g| = 0 if and only if g = e is the identity; (2) |g−1| = |g|, for all g ∈ G; and (3)
|gh| ≤ |g|+ |h|, for all g,h ∈ G. A length function is proper if the map g 7→ |g|
is proper, i.e., all sets of bounded length are finite. If | · | is a length function, then
we denote

B(n) = {g ∈ G : |g| ≤ n},

the ball of radius n centered at the identity, and

S(n) = {g ∈ G : |g| = n},

the sphere of radius n centered at the identity. If G is generated by a finite set S,
then the function which assigns to each g ∈ G the least integer k such that g can
be written as a product of k elements from S ∪ S−1 is a proper length function,
known as a word length function.

Notation 1.5. Let G be a finitely-generated discrete group with a fixed finite, sym-
metric, generating set S. Let F ⊂ G be a finite subset. We set

∂F :=
⋃

g∈S

gF∆F,

where “∆” denotes the symmetric difference.

Definition 1.6. A sequence (Fn)n∈N of finite subsets of G is said to form a Følner
sequence if

|gFn∆Fn|

|Fn|
→ 0

for all g ∈ G.
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Definition 1.7. Let G be a finitely generated discrete group with a fixed finite,
symmetric, generating set S. For a constant K > 0, a sequence (Fn)n∈N of finite
subsets of G is said to be a K-controlled Følner sequence if

|∂Fn|

|Fn|
≤

K

diam Fn
,

where diam Fn is defined to be the least integer m such that Fn ⊂ B(m). The
group admits a controlled Følner sequence if it admits a K-controlled Følner se-
quence for some K.

Definition 1.8. A finitely generated group G is said to have polynomial growth if
for some (equivalently, for any) proper word length function we have that

lim sup
n

log|B(n)|

logn
< ∞.

The group G is said to be of weak polynomial growth if

lim inf
n

log|B(n)|

logn
< ∞

for any proper word length.

The following observation is due to Shalom.

Proposition 1.9 (Shalom, Lemma 6.7.3 in [15]). If G is a finitely generated group of
polynomial growth of degree d, then for any proper word length, there is a subsequence
S ⊂ N such that the sequence of balls (B(n))n∈S form a K-controlled Følner sequence
for K > 10d.

In fact, a group G which satisfies a doubling condition |B(2n)| ≤ C · |B(n)|
for some subsequence admits a controlled Følner sequence by an observation of
Tessera, [18], Remark 4.10. Gromov’s “Regularity lemma” ([10], section 3) shows
that groups of weak polynomial growth have the doubling condition. By the
work of Tessera several large classes of groups are known to admit controlled
Følner sequences.

Proposition 1.10 (Tessera, Theorem 11 in [18] and Theorem 6 in [19]). The following
classes of groups admit controlled Følner sequences:

1. polycyclic groups;

2. wreath products D ≀ Z with D finite;

3. semi-direct products Z[ 1
mn ]⋊m/n Z, with m,n coprime and |mn| ≥ 2;

4. any closed, undistorted subgroup (e.g., cocompact lattice) of a direct product of a
p-adic solvable group with a connected, solvable Lie group.
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By results of Mal’cev and Auslander, it is known that a group G is polycyclic
if and only if G is realizable as a solvable subgroup of GL(n, Z), cf. [5], section
III.A.5.

The full extent of the class of amenable groups admitting a controlled Følner
sequence is unknown. An interesting problem would be to determine exactly
which solvable groups with finite Hirsch number belong to this class or at least
have property HFD. (To recall, let G be a solvable group with derived series
G > G(1) > G(2) > · · · > G(n) > G(n+1) = {1}. The Hirsch number is then de-
fined to be the sum of the torsion-free ranks of the abelian groups G(i)/G(i+1),
i = 1, . . . ,n. See section 6.6 in [15] for a discussion on this problem.) We pose the
following, more concrete question:

Question 1.11. If Γ is a solvable subgroup of GL(n, Z[ 1p ]), does Γ admit a con-

trolled Følner sequence?

If Γ is an undistorted solvable subgroup of GL(n, Z[ 1p ]), then the answer is affir-

mative by item (4) of the previous proposition, so it would be interesting to know
whether there are other solvable subgroups of GL(n, Z[ 1p ]). We remark that Z[ 1p ]

cannot be replaced with Z[τ] for some non-algebraic number τ, since GL(2, Z[τ])

contains a copy of Z ≀ Z which does not to admit a controlled Følner sequence by
an isoperimetric inequality due to Erschler [8].

1.3 Arrays

The definition of an array was formally introduced in [2] as a means for unifying
the concepts of length functions and 1-cocycles into orthogonal representations.
We now recall the definition.

Definition 1.12. Let π : G → O(H) be an orthogonal representation of a countable
discrete group G. A map α : G → H is called an array if for every finite subset
F ⊂ G there exists K ≥ 0 such that

‖πg(α(h)) −α(gh)‖ ≤ K, (1.1)

for all g ∈ F, h ∈ G (i.e., α is boundedly equivariant). It is an easy exercise to show
that for any array α on a finitely generated group G there exists a proper word
length function on G, a scalar multiple of which bounds ‖α(g)‖ from above.

Lemma 1.13. Let G be a finitely generated group equipped with some proper word length
associated to a finite, symmetric, generating set S. If α : G → O(H) is an array into an
orthogonal representation π, then α̃(g) := 1

|g|
α(g)⊗ α(g), with α̃(e) := 0, is an array

into π⊗ π.

Proof. The proof is very similar to the proof of Proposition 1.4 of [2]: we include
it here only for the sake of completeness. First, for every g ∈ G, we denote by
Bg := suph∈G ‖α(gh) − πg(α(h))‖ and from the assumptions we have Bg < ∞.
Using the triangle inequality together with the bounded equivariance property,
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for all k ∈ G we have ‖α(k)‖ ≤ D|k|, where D = maxs∈S Bs. This further implies
that for every ℓ ∈ G we have the following inequality

sup
k 6=e,ℓ−1

‖α(k)‖

|ℓk|
= sup

k 6=e,ℓ−1

‖α(k)‖

|k|
·
|k|

|ℓk|
≤ D(|ℓ|+ 1). (1.2)

To check the bounded equivariance for α̃, we fix g,h ∈ G where h 6= e, g−1.
Applying the triangle inequality and using successively the bounded equivari-
ance property, the basic inequality ||gh|− |h|| ≤ |g|, and the inequality (1.2), we
have

‖α̃(gh) − (π⊗ π)gα̃(h)‖ ≤
‖(α(gh) − πgα(h))⊗ α(gh)‖

|gh|
+

+
‖πgα(h)⊗ (α(gh) − πgα(h))‖

|gh|
+

+ ‖πgα(h)⊗ πgα(h)‖

∣∣∣∣
1

|gh|
−

1

|h|

∣∣∣∣

≤ Bg
‖α(gh)‖

|gh|
+Bg

‖α(h)‖

|gh|
+ ||gh|− |h||

‖α(h)‖

|h|

‖α(h)‖

|gh|

≤ BgD(|g|+ 2) +D2|g|(|g|+ 1).

This implies that for every g,h ∈ G we have

‖α̃(gh) − (π⊗ π)gα̃(h)‖ ≤ max{BgD(|g|+ 2) +D2|g|(|g|+ 1), ‖α̃(g−1)‖, ‖α̃(g)‖},

which concludes our proof as the right hand expression depends only on g.

1.4 Large scale lipschitz maps

Let V be a normed vector space. We will say a map f : G → V is large scale lipschitz
if there exists a map C : G → R≥0 such that for all g ∈ G, ‖f(g) − f(gs)‖ ≤ C(s).
An array can be viewed in some sense as the formal adjoint of some large scale
lipschitz map f : G → H with respect to the representation π, viz.,

Proposition 1.14. If α : G → H is an array associated to π, then α⋆(g) := π(g)α(g−1)

is large scale lipschitz. Conversely, if f : G → H is large scale lipschitz, then
f⋆(g) := π(g)f(g−1) is an array associated to π.

The proof consists of a straightforward check that the respective identities are
satisfied.

Given a finite, symmetric generating set S for G, for any map f : G → R we
define the variation function ∂f : G → RS by ∂f(g)(s) := f(g) − f(gs).

Definition 1.15. A bounded function f : G → R is said to be slowly oscillating if
‖∂f‖ ∈ C0(G), where ‖ · ‖ is the euclidean norm on R

S.

Note that if f : G → V is a large scale lipschitz map into a normed vector space V ,
then g 7→ 1

|g|
f(g) is slowly oscillating.
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We define H∞(G) to be Banach space of all slowly oscillating functions. For all
1 ≤ p < ∞, we also define Hp(G) to be the Banach space of all slowly oscillating
functions f such that ‖∂f‖ ∈ ℓp(G). Note that the definition of Hp(G) for all
1 ≤ p ≤ ∞ does not depend on the choice of finite generating set.

Our interest in slowly oscillating functions stems from the following “rigid-
ity” phenomenon which can be observed under the assumption of ergodicity.

Proposition 1.16. If f ∈ H∞(G) is a function such that

∫
f(g−1)dµn(g) → 0

for all Reiter sequences (µn), then f ∈ C0(G).

Proof. Suppose by contradiction that f does not belong to C0(G). Without loss
of generality, we would have that there would exist c > 0 and a sequence (gn)

of elements in G such that f(gn) ≥ c for all n ∈ N. Since f ∈ H∞(G), for any
finite subset F ⊂ G there exists n ∈ N sufficiently large so that f(h) ≥ c/2 for
all h ∈ gnF. Hence, passing to a subsequence of (gn), there is a Følner sequence
(Fk) with the property that f(h) ≥ c/2 for all h ∈ gnk

F−1

k for all k ∈ N. Taking
µk to be the uniform probability measure on the set Fkg

−1

nk
, we would then have

constructed a Reiter sequence such that lim infk
∫
f(g−1)dµk(g) ≥ c/2 > 0, a

contradiction.

Definition 1.17. Let G be an amenable group, and let f : G → V be a large scale
lipschitz map. We say that f has sublinear growth if lim sup|g|≥n‖f(g)‖/|g| = 0.

We say that f has almost sublinear growth if
∫

1
|g|
‖f(g)‖dµn(g) → 0 for all Reiter

sequences (µn).

Proposition 1.18. Let G be an amenable group. Let f : G → H be a large scale lipschitz
map in to Hilbert space. If f is symmetric, i.e., ‖f(g)‖ ≡ ‖f(g−1)‖, then the following
statements are equivalent:

1. f has sublinear growth;

2. f has almost sublinear growth;

3. fξ(g) := 〈f(g), ξ〉 has sublinear growth for all ξ ∈ H and the set

V :=
{

1
|g|
f(g)

}

g∈G
is precompact;

4. fξ has almost sublinear growth for all ξ ∈ H and V is precompact.

Proof. The implications (1)⇒(2), (1)⇒(3), and (3)⇒(4) are trivial, while the im-
plication (2)⇒(1) follows directly by Proposition 1.16 applied to the function
1
|g|
‖f(g)‖. Therefore, we only need prove the implication (4)⇒(1).

To this end, note that if V is precompact, then for any ǫ > 0 we can find a set
of vectors ξ1, . . . , ξn ∈ H so that

∫( 1

|g|
‖f(g)‖

)2
dµ(g) ≤ C

n∑

i=1

∫
1

|g|
|〈f(g), ξi〉|dµ(g) + ǫ (1.3)
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holds for any probability measure µ, where C := supg∈G
‖f(g)‖
|g|

< ∞. Thus, by

almost sublinear growth of each fξ and the Cauchy–Schwarz inequality, we have
that

∫
1
|g|
‖f(g)‖dµn(g) → 0 along any Reiter sequence. By symmetry, the result

then obtains by Proposition 1.16.

2 Main Results

2.1 Arrays and the weak mean ergodic theorem

In this section we present the proof of Theorem A. Though the theorem was
stated explicitly for cocycles, the natural context for the theorem is actually the
class of arrays. This is essentially due to the fact that there is no well-defined
product of cocycles, while such a product exists for the class of arrays. This al-
lows us to exploit the weak mixingness in order to derive the strong form of the
theorem in that case.

Theorem 2.1 (Theorem A). Let π : G → O(H) be an ergodic orthogonal representation
of a finitely generated amenable group G, and let α : G → H be an array. Let S be a finite,
symmetric, generating set for G, and let | · | denote the word length in S. If (µn)n∈N is a
Reiter sequence for G, then ∫

1

|g|
α(g)dµn(g) → 0 (2.1)

in the weak topology. If π is weakly mixing, then

∫
1

|g|
|〈α(g), ξ〉| dµn(g) → 0 (2.2)

for all ξ ∈ H.

Before we begin the proof, we pause to introduce some convenient notation
to be used here as well as in the sequel.

Notation 2.2. Let α : G → H be an array. We set

α♭(g) =
1

|g|
α(g),

where by convention α♭(e) = 0. H⊗H will be denoted as H̃. The representation

π⊗ π : G → O(H̃) will be denoted as π̃. The array α̃ : G → H̃ is defined as

α̃(g) =
1

|g|
α(g)⊗ α(g),

where α̃(e) = 0 by convention.

Proof of Theorem 2.1. The proofs of these formulas are inspired by the standard
approach to the (weak) mean ergodic theorem for amenable groups. We begin by
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proving (2.1). To this end, we fix ǫ > 0, n ∈ N and note that there exists a finite
subset Fn ⊂ G such that

‖α♭(gh) − π(g)α♭(h)‖ ≤ ǫ

whenever g ∈ B(n) and h ∈ G \ Fn. Let ξ ∈ H be a vector of the form
ξ = (1− π(g−1))η for some g ∈ B(n), η ∈ H. We then have that

∣∣∣
∫
〈α♭(h), ξ〉dµN(h)

∣∣∣

=
∣∣∣
∫
〈α♭(h) − π(g)α♭(h), η〉dµN(h)

∣∣∣

≤
∣∣∣
∫
〈α♭(gh) − π(g)α♭(h), η〉dµN(h)

∣∣∣+
∫
|〈α♭(k), η〉| d|µN(g

−1k) − µN(k)|

≤ ‖η‖

∫
‖α♭(gh) − π(g)α♭(h)‖ dµN(h) + sup

k

‖α♭(k)‖ · ‖µN − g ∗ µN‖1 . 2‖η‖ǫ,

(2.3)

since limN µN(Fn) = 0 and ‖α♭‖ is bounded. By inspection, the estimate holds for
the span V := span{ξ : ∃g ∈ G, η ∈ H(ξ = (1−π(g))η)}, establishing the theorem
in that case. Since

∫
‖α♭(g)‖ dυn(g) is uniformly bounded, the result then extends

to the closure of V , which by ergodicity is all of H. This concludes the proof of
(2.1).

For the proof of the second part, formula (2.2), we note that if α : G → H is an
array for π, then α̃(g) is an array for π̃ by Lemma 1.13. Applying this, we see that

∣∣∣
∫
〈α̃♭(h), ξ⊗ ξ〉dµN(h)

∣∣∣ =
∫
|〈α♭(h), ξ〉|2 dµN(h) → 0 (2.4)

by the proof of (2.1). By the Cauchy–Schwarz inequality, we have that

∫
|〈α♭(h), ξ〉| dµN(h) ≤

(∫
|〈α♭(h), ξ〉|2 dµN(h)

)1/2
, (2.5)

and we are done.

In the case the 1-cocycle is proper, there is a sharpening of the above result.
The proof is identical the the proof of the previous theorem, using Proposition 1.4
from [2] instead of Lemma 1.13.

Proposition 2.3. Let π : G → H be a weakly mixing orthogonal representation.
If b : G → H is a proper 1-cocycle, then

∫
1

‖b(g)‖
|〈b(g), ξ〉|dµn(g) → 0 (2.6)

for all Reiter sequences (µn).
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2.2 Theorem B and the mean ergodic theorem

We begin with the main technical theorem in this section, the formulation and
proof of which are inspired by Lemma 3.4 in [3].

Theorem 2.4. Let G be a finitely generated discrete group in the class CF . Let
b : G → H be a 1-cocycle associated to an orthogonal representation π. Assume that

1

|g|
〈b(g), ξ〉 ∈ C0(G) (2.7)

for all ξ ∈ H (i.e., b is weakly sublinear). Let (Fn)n∈N be a K-controlled Følner sequence.
Let υn be the uniform measure on Fn. There exists a sequence (µk) of finitely supported
measures which are in the convex hull of {υn} such that ξk :=

∫
b(g)dµk(g) form a

sequence of almost fixed points for the affine action G y
T H associated to b.

Proof. Fix a word length | · | coming from some finite, symmetric generating set
S ⊂ G. Let dn = diam Fn. We set Fn(g) = gFn∆Fn ⊂ ∂Fn ⊂ B(dn + 1), for each
g ∈ S. Let ηn =

∫
b(g)dυn(g).

For all n ∈ N we have the a priori estimate

‖Tg(ηn) − ηn‖ =
∥∥∥
∫
b(h)dυn(g

−1h) −

∫
b(h)dυn(h)

∥∥∥

≤
1

|Fn|

∫

Fn(g)

‖b(h)‖ dh

≤ C(dn + 1) ·
|∂Fn|

|Fn|
≤ 2CK,

(2.8)

where C = sups∈S‖b(s)‖.
Therefore, we need only show that for any ξ ∈ H and g ∈ S, we have that

lim
n
|〈Tg(ηn) − ηn, ξ〉| = 0. (2.9)

Indeed, the sequence (Tg(ηn) − ηn)n∈N would then have 0 as a weak limit point
for any g ∈ S. Thus, the sequence

⊕
g∈S(Tg(ηn) − ηn) ⊂

⊕
g∈SH converges

weakly to 0, so that by passing to the convex hull, the theorem obtains.
We now fix ξ ∈ H. By assumption 2.7 for every ǫ > 0 there exists a finite set

Eǫ ⊂ G such that
|〈b(g), ξ〉| < ǫ|g| (2.10)

for all g ∈ G \ Eǫ.
Since limn υn(Eǫ) = 0, we have that for any g ∈ S,

|〈Tg(ηn) − ηn, ξ〉| =
∣∣∣
∫
〈b(h), ξ〉dυn(g

−1h) −

∫
〈b(h), ξ〉dυn(h)

∣∣∣

=
1

|Fn|

∣∣∣
∫

Fn(g)

〈b(h), ξ〉dh
∣∣∣

≤
1

|Fn|

∫

Fn(g)

|〈b(h), ξ〉| dh

. 2ǫ(dn + 1)
|∂Fn|

|Fn|
≤ 4Kǫ,

(2.11)
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and we are done.

Question 2.5. By Proposition 3.1 in [3] we know that any almost inner 1-cocycle
has sublinear growth. For a general amenable group, is it the case that any weakly
sublinear 1-cocycle is in fact (strongly) sublinear?

Examining the proof of the previous theorem, we find that the conclusion
holds under the following weaker hypothesis.

Proposition 2.6. Let G be a finitely generated discrete group in the class CF . Let b :

G → H be a 1-cocycle associated to an orthogonal representation π. For every c > 0,
ξ ∈ H define the set Ec(ξ) := {g ∈ G : |〈b(g), ξ〉| ≥ c|g|}. Suppose there exists K

and (Fn)n∈N a K-controlled Følner sequence so that for all c, ξ, δ > 0 |∂Fn ∩ Ec(ξ)| ≤
δ/dn · |Fn| for all n sufficiently large. Let υn be the uniform measure on Fn. There
exists a sequence (µk) of finitely supported measures which are in the convex hull of {υn}
such that ξk :=

∫
b(g)dµk(g) form a sequence of almost fixed points for the affine action

G y
T H associated to b.

Proof. The proof of Theorem 2.4 carries over nearly identically, except for the last
estimate of equation 2.11. Using the same notation and set-up, fixing ǫ > 0 we
have instead that for n sufficiently large

1

|Fn|

∫

Fn(g)

|〈b(h), ξ〉| dh

=
1

|Fn|

∫

Fn(g)∩Eǫ(ξ)
|〈b(h), ξ〉| dh+

1

|Fn|

∫

Fn(g)\Eǫ(ξ)

|〈b(h), ξ〉| dh

. 4ǫ(dn + 1)
|∂Fn|

|Fn|
≤ 8Kǫ.

Question 2.7. Suppose G admits a controlled Følner sequence and that E ⊂ G be
a set which has zero measure for any left invariant mean on G. Does G also admit
a controlled Følner sequence (Fn) so that for every δ > 0 |∂Fn ∩ E| ≤ δ/dn · |Fn|
for all n sufficiently large.

Remark 2.8. Recently, Gournay [9] generalized the argument of Proposition 3.1
in [3] from groups with controlled Følner sequences to the more general class
of “transport amenable” groups; see Definition 1.3 in [9]. This class includes,
in particular Z ≀ Z. Therefore, it would be highly interesting to know whether
Theorem 2.4 likewise holds for all transport amenable groups.

Definition 2.9. A group G has property HFD of Shalom if any affine action G y
T H

on Hilbert space with weakly mixing linear part admits almost fixed points.

Proposition 2.10. Suppose that either Question 2.5 or 2.7 has a positive solution for a
group G which admits a controlled Følner sequence. Then G has property HFD.

The proof is an easy consequence of Theorem 2.4 and Proposition 2.6. It follows
from an argument given in [15] (Theorem 6.7.2) that a positive solution to either
Question 2.5 or 2.7 for all groups of polynomial growth implies Gromov’s theo-
rem.
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A stated in Proposition 1.10, among the known classes of amenable groups
which admit controlled Følner sequences are: groups of (weak) polynomial
growth; polycyclic groups, i.e., lattices in solvable Lie groups; wreath products
D ≀ Z with D finite; semi-direct products Z[ 1

mn ]⋊m/n Z, with m,n coprime and
|mn| ≥ 2. The latter three classes are the work of Tessera, Theorem 11 in [18].
Each of these classes is known have property HFD by the seminal work of Shalom,
Theorems 1.13 and 1.14 in [15], which in the polycyclic case relies in turn on deep
work of Delorme [6]from the 1970s. The advantage to the approach suggested
here is that it may potentially offer a broad, conceptually unified way of deriving
property HFD for large classes of groups.

We also point out that another consequence of a positive solution to Question
2.14 would give an alternate proof of the fact (due to Erchler [8]) that Z ≀ Z, for
instance, does not admit a controlled Følner sequences, cf. Theorem 1.15 in [15].

Theorem 2.11 (Theorem B). Let G be finitely generated group in the class CF . Let
π : G → O(H) be an orthogonal representation, and let b : G → H be a 1-cocycle
associated to π. Suppose that

∫
1

|g|
〈b(g−1), ξ〉dµn(g) → 0 (2.12)

for all ξ ∈ H and all Reiter sequences (µn). Then the affine action G y
T H associated

to b admits a sequence of almost fixed points.

Proof. The proof follows directly from Proposition 1.16 combined with Theorem
2.4.

Definition 2.12. Let G be a finitely generated group and let µ be a probability
measure on G. A function u : G → V into a vector space is said to be µ-harmonic
if

u(g) =

∫
u(gs)dµ(s) (2.13)

for all g ∈ G.

Let µ be a probability measure with finite second moment, i.e.,
∫
|g|2dµ(g) <

∞. We know, by Theorem 6.1 in [14] and Theorem 6.1 in [4], that every group
G without property (T) of Kazhdan admits at least one µ-harmonic 1-cocycle for
some (irreducible) representation.

Proposition 2.13. Let G be a group in the class CF , π : G → O(H) be an orthogonal
representation, and b : G → H be a µ-harmonic 1-cocycle with µ having finite second
moment. Let π0 be the restriction of π to the (invariant) subspace H0 spanned by the

image of b. If V :=
{

1
|g|
b(g)

}
is precompact, then π0 is compact.

Proof. Suppose by contradiction that H0 contains an non-zero invariant subspace
K on which the restriction of π is weakly mixing. Setting b ′ : G → K defined
by b ′(g) := PKb(g), we then would have that b ′ is a harmonic 1-cocycle into a

weakly mixing representation such that V ′ := PKV =
{

1
|g|
b ′(g)

}
is precompact.

Proposition 1.18 then implies that b ′(g) has sublinear growth; hence, by Theorem
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2.4 it is almost inner. However, no non-zero harmonic 1-cocycle into an orthogo-
nal representation can be almost inner, cf. Theorem 6.1 in [4]. Therefore, b ′ ≡ 0

which contradicts the fact that the span of V ′ is dense in K. Thus, we have shown
that π0 contains no non-zero, weakly mixing subrepresentation which implies
that π0 is compact.

Question 2.14. Let G be an amenable group, and let µ be a probability measure
with finite second moment and trivial Poisson boundary. If u : G → R is a
lipschitz µ-harmonic function such that

∫
1

|g|
|u(g)|dµn(g) → 0

for all Reiter sequences (µn), does u have sublinear growth?

Notice that if u is harmonic, then |u| is subharmonic, i.e., |u|(g) ≤ 1
|S|

∑
s∈S|u|(gs)

for all g ∈ G, so the conjecture may be posed in this generality. A positive solution
to Question 2.14 also implies that the group G has property HFD. The use of har-
monicity as a tool for “regularizing” the cocycle is a key insight in the approach
of Kleiner [13].

Remark 2.15. A result of Hebisch and Saloff-Coste, Theorem 6.1 in [11], shows
that there a no non-constant real-valued harmonic functions of sublinear growth
on a group of polynomial growth. It would be interesting if a variant of this argu-
ment could be made to apply to harmonic functions of almost sublinear growth.

2.3 On the space Hp(G)

As a last remark, we develop another line of thought towards establishing the
mean ergodic theorem for affine actions of groups of polynomial growth inde-
pendently of Gromov’s theorem.

Theorem 2.16. Let G be a one-ended group with a finite, symmetric, generating set S.
If f ∈ H1(G), then f ∈ C0(G) + C1.

Proof. For every ǫ > 0, choose r sufficiently large so that

Kr :=
∑

g∈G\Br

∑

s∈S

|f(g) − f(gs)| < ǫ.

Since G is one-ended G \ Br contains exactly one infinite connected component
Ur. For every pair of elements g,h ∈ Ur there exists a sequence of elements
x1, . . . , xn in Ur such that g = x1, h = xn and x−1

i+1xi ∈ S for all i = 1, . . . ,n− 1.
Hence it follows by the triangle inequality that

|f(g) − f(h)| ≤ Kr

which proves the claim.

In fact, in the case that f is positive, a slightly weaker condition will suffice:
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Theorem 2.17. For f ∈ ℓ∞(G) and F ∈ ℓ∞(G× S), let f · F(g, s) := f(g)F(g, s). Let G
be a one-ended group with a finite, symmetric, generating set S. Suppose that f ∈ ℓ∞(G),
f ≥ 0. If ‖f · ∂f‖ ∈ ℓ1(G), then f ∈ C0(G) + C1.

Note that since f ≥ 0, we have that ‖f · ∂f‖ ≤ ‖∂(f2)‖; hence, by the boundedness
of f and standard estimation techniques it follows that if fp ∈ H1(G) for any
1 ≤ p < ∞, then it holds that f ∈ C0(G) + C1.

Proof. Let Γ = Γ(G, S) be the Cayley graph of G with respect to the generating set
S. We produce a new graph Γ ′ by subdividing each edge in Γ so the the vertex
set of Γ ′ may be identified with V(Γ)⊔ E(Γ) and Γ ′ is again one-ended. We define
a map f ′ : V(Γ ′) → R by f ′(g) := f(g)2 for g ∈ V(Γ) and f ′(e) := f(g)f(gs) for
e = (g, gs) ∈ E(Γ). Now by assumptions we can see that ‖∂f ′‖ ∈ ℓ1(V(Γ ′)), so by
Theorem 2.16, we can conclude that f2 ∈ C0(G) + C1. By the positivity of f, this
suffices to show the result.

Proposition 2.18. Let G be a one-ended group in the class CF . If b is a 1-cocycle
associated to an ergodic representation π : G → O(H) such that

1

|g|
〈b(g), ξ〉 ∈ H1(G) (2.14)

for all ξ ∈ H, then b is almost inner. The same holds assuming that π is weakly mixing
and

1

|g|
|〈b(g), ξ〉| ∈ H1(G). (2.15)

Proof. The proof follows directly from Theorem 2.16 and Theorem 2.4.

Proposition 2.19. If G is a group of polynomial growth, then there exists 1 ≤ p < ∞
such that for any 1-cocycle b : G → H we have that

1

|g|
〈b(g), ξ〉 ∈ Hp(G) (2.16)

for all ξ ∈ H

Proof. Fixing a finite generating set S, we have that
∑

s∈S‖
1
|g|
b(g) − 1

|gs|
b(gs)‖ ≪

1
|g|

choosing an integer p such that Rp−2 ≫ |B(R)|, we have that

∑

g∈G

∑

s∈S

∥∥∥
1

|g|
b(g) −

1

|gs|
b(gs)

∥∥∥
p
≪

∑

g∈G

|g|−p ≪
∑

n∈N

n−2 (2.17)

from which the result easily obtains.

Conjecture 2.20. If G is a one-ended group of polynomial growth, then for any
1 ≤ p < ∞ any positive function f ∈ Hp(G) belongs to C0(G) + C1.
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