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Graph Terminology and 
Representations

Presentation for use with the textbook, Algorithm Design and 
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015
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Graphs
 A graph is a pair (V, E), where

 V is a set of nodes, called vertices
 E is a collection of pairs of vertices, called edges
 Vertices and edges are positions and store elements

 Example:
 A vertex represents an airport and stores the three-letter airport code
 An edge represents a flight route between two airports and stores the 

mileage of the route

ORD PVD

MIA
DFW

SFO

LAX

LGA
HNL
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Edge Types
 Directed edge

 ordered pair of vertices (u,v)
 first vertex u is the origin
 second vertex v is the destination
 e.g., a flight

 Undirected edge
 unordered pair of vertices (u,v)
 e.g., a flight route

 Directed graph
 all the edges are directed
 e.g., route network

 Undirected graph
 all the edges are undirected
 e.g., flight network

ORD PVDflight
AA 1206

ORD PVD849
miles
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Applications
 Electronic circuits

 Printed circuit board
 Integrated circuit

 Transportation networks
 Highway network
 Flight network

 Computer networks
 Local area network
 Internet
 Web

 Databases
 Entity-relationship diagram

3

4



Lists and Iterators 11/7/2019

3

5

Terminology
 End vertices (or endpoints) of 

an edge
 U and V are the endpoints of a

 Edges incident on a vertex
 a, d, and b are incident on V

 Adjacent vertices
 U and V are adjacent

 Degree of a vertex
 X has degree 5 

 Parallel edges
 h and i are parallel edges

 Loop
 j is a loop

XU

V
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Z

Y
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g
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j
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Terminology (cont.)
 Path

 sequence of alternating 
vertices and edges 

 begins with a vertex
 ends with a vertex
 each edge is preceded and 

followed by its endpoints
 it contains at least one edge

 Simple path
 path such that all its vertices 

and edges are distinct
 Examples

 P1=(V,b,X,h,Z) is a simple path
 P2=(U,c,W,e,X,g,Y,f,W,d,V) is a 

path that is not simple
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Terminology (cont.)
 Cycle

 circular sequence of alternating 
vertices and edges 

 each edge is preceded and 
followed by its endpoints

 Simple cycle
 cycle such that all its vertices 

and edges are distinct
 Examples

 C1=(V,b,X,g,Y,f,W,c,U,a,) is a 
simple cycle

 C2=(U,c,W,e,X,g,Y,f,W,d,V,a,)
is a cycle that is not simple

 Edges can be dropped if no 
multiple edges exist.

C1

XU

V
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Z

Y
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c
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d

f

g

hC2

From now on, the default is 
that a graph has no multiple 
edges. 
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Properties
Notation

n number of vertices
m number of edges

deg(v) degree of vertex v

Property 1
v deg(v) 2m

Proof: each edge is 
counted twice

Property 2
In an undirected graph 

with no loops and no 
multiple edges
m  n (n  1)2

Proof: each vertex has 
degree at most (n  1)

What is the bound for a 
directed graph?

Example
 n 4
 m 6
 deg(v) 3
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Vertices and Edges
 A graph is a collection of vertices and edges. 
 A Vertex is can be an abstract unlabeled object 

or it can be labeled (e.g., with an integer 
number or an airport code) or it can store other 
objects

 An Edge can likewise be an abstract unlabeled 
object or it can be labeled (e.g., a flight 
number, travel distance, cost), or it can also 
store other objects.

Relations vs Graph
 A relation R on the set A is a subset of AA.
 There is 1-to-1 correspondence between R and (directed) G=(A, R).

 Example: Let A = {1, 2, 3, 4}. Which ordered pairs are in the 
relation R = {(a, b) | a < b} ?

1

4

2

3

R = { (1,2), (1,3), (1,4), (2,3), (2,4), (3,4) }

9
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Representing Relations Using Digraphs
 Example: Display the digraph with V = {a, b, c, d}, 
E = {(a, b), (a, d), (b, b), (b, d), (c, a), (c, b), (d, b)}.

a
b

cd

An edge of the form (b, b) is called a loop.

Relations on a Set
 How many different relations can we define on a 
set A with n elements?
 A relation on a set A is a subset of AA.
 How many elements are in AA ?
 The number of subsets that we can form out of a set 
with m elements is 2m. Therefore, 2n2 subsets can be 
formed out of AA.
 Answer: We can define 2n2 different relations 
on A. As a result, we have that much directed graphs on n 
points.

11
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Possible Quiz Question

13

• How many different undirected graphs 
over n points?

• How many different loop-free directed 
graphs over n points?

Properties of Relations

 Definition: A relation R on a set A is called 
reflexive if (a, a)R for every element aA.

 The graph that each node has a loop represents a 
reflexive relation.

13
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Properties of Relations 

Definitions:
 A relation R on a set A is called symmetric if (b, a)R whenever 
(a, b)R for all a, bA. 

 Every undirected graph represents a symmetric relation.

 A relation R on a set A is called antisymmetric if 
a = b whenever (a, b)R and (b, a)R.

 (N, ) is antisymmetric

 A relation R on a set A is called asymmetric if 
(a, b)R implies that (b, a)R for all a, bA. 

 (N, <) is asymmetric

What is the relation between “antisymmetric” and “asymmetric”?
 R is asymmetric iff R is antisymmetric and has no loops.

Properties of Relations

 Definition: A relation R on a set A is called 
transitive if whenever (a, b)R and (b, c)R, then (a, 
c)R for a, b, cA. 

 Whenever there is a path that goes from a to b, then 
there is an edge (a, b) in the graph, then the graph 
represents a transitive relation.

 Are the following relation on {1, 2, 3} transitive?

R = {(1, 1), (1, 2), (2, 1), (3, 3)}

15
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Combining Relations

 Definition: Let R be a relation from a set A to a set B 
and S a relation from B to a set C. The composite of R 
and S is the relation consisting of ordered pairs (a, c), 
where aA, cC, and for which there exists an element 
bB such that (a, b)R and (b, c)S. We denote the 
composite of R and S by SR.

 If A = B = C, and S = R, then RR can be written as R2.

 If R is represented by a graph, then (a, b) is in R2 iff
there is a path of length 2 from a to b. 
 In general, (a, b) is in Rk iff there is a path of length k 
from a to b. 

Combining Relations
 Definition: Let R be a relation on the set A. The powers
Rk, k = 1, 2, 3, …, are defined inductively by
 R1 = R
 Rk+1 = RkR

 In other words: Rk = RR … R  (k times the letter R)

 The relation R* = R1  R2  R3  …  Rn-1, where n is the 
number of nodes, is called the transitive closure of R.

 To decide if (a, b) in R*, we need to decide if there is a 
path from a to b in G = (A, R).

17
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Combining Relations
 Theorem: The relation R on a set A is transitive 
if and only if Rk  R for all positive integers k. 

Remember the definition of transitivity:
 Definition: A relation R on a set A is called transitive if 
whenever (a, b)R and (b, c)R, then (a, c)R for a, b, 
cA. 

 The composite of R with itself contains exactly these pairs (a, c). 
 Therefore, for a transitive relation R, RR does not contain any pairs 
that are not in R, so RR  R.
 Since RR does not introduce any pairs that are not already in R, it 
must also be true that (RR)R  R, and so on, so that Rk  R.

Equivalence Relations 

 Equivalence relations are used to relate objects that 
are similar in some way.

 Definition: A relation on a set A is called an 
equivalence relation if it is reflexive, symmetric, and 
transitive.

 Two elements that are related by an equivalence relation 
R are called equivalent.

 The best representation of an equivalence relation is 
Sets.

19
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Adjacency List Structure
 Incidence sequence 

for each vertex
 sequence of 

references to edge 
objects of incident 
edges

 Augmented edge 
objects
 references to 

associated 
positions in 
incidence 
sequences of end 
vertices

22

Adjacency Matrix Structure
 Edge list structure
 Augmented vertex 

objects
 Integer key (index) 

associated with vertex
 2D-array adjacency 

array
 Reference to edge 

object for adjacent 
vertices

 Null for non 
nonadjacent vertices

 The “old fashioned”
version just has 0 for 
no edge and 1 for edge e, f, g, h can be replaced 

by 1; blanks by 0. 

21
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Possible Quiz Question

23

Suppose direct graph G = (V, E) is 
represented by 0/1 adjacency matrix A and 
k is a positive integer.

• Let B = Ak. If B is the 0/1 adjacency 
matrix for another graph H over V, what is 
the relationship between H and G in 
terms of paths in G?

• How to compute Ak efficiently?

Graph Representations

Option 1:

Class Node

String: Name

Boolean: Visited

List<Node>: Neighbors

List<Integer>: Costs

End Node

Option 2:

Class Node

String: Name

Boolean: Visited

List<Edge>: Edges

End Node

Class Edge

Integer: Cost

Node: toNode

Node: fromNode

End Edge

23
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Performance
(All bounds are big-oh running times, except  for “Space”)
 n vertices, m edges
 no parallel edges
 no self-loops

Edge
List

Adjacency
List

Adjacency 
Matrix

Space n  m n  m n2

incidentEdges(v) m deg(v) n

areAdjacent (v, w) m min(deg(v), deg(w)) 1

insertVertex(o) 1 1 n2

insertEdge(v, w, o) 1 1 1

removeVertex(v) m deg(v) n2

removeEdge(e) 1 deg(v) 1

26

Subgraphs
 A subgraph S of a graph 

G is a graph such that 
 The vertices of S are a 

subset of the vertices of G
 The edges of S are a 

subset of the edges of G
 A spanning subgraph of G 

is a subgraph that 
contains all the vertices 
of G

Subgraph

Spanning subgraph

25
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Application: Web Crawlers
 A fundamental kind of algorithmic operation that we 

might wish to perform on a graph is traversing the 
edges and the vertices of that graph. 

 A traversal is a systematic procedure for exploring a 
graph by examining all of its vertices and edges. 

 For example, a web crawler, which is the data 
collecting part of a search engine, must explore a 
graph of hypertext documents by examining its 
vertices, which are the documents, and its edges, 
which are the hyperlinks between documents. 

 A traversal is efficient if it visits all the vertices and 
edges in linear time.

27

28

Connectivity
 A graph is connected 

if there is a path 
between every pair of 
vertices

 A connected 
component of a 
graph G is a maximal 
connected subgraph 
of G

Connected graph

Non connected graph with two 
connected components

27
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Trees and Forests
 A (free) tree is an 

undirected graph T such 
that
 T is connected
 T has no cycles
This definition of tree is 

different from rooted
trees

 A forest is an undirected 
graph without cycles

 The connected 
components of a forest 
are trees

Tree

Forest

30

Spanning Trees and Forests
 A spanning tree of a 

connected graph is a 
spanning subgraph that is 
a tree

 A spanning tree is not 
unique unless the graph is 
a tree

 Spanning trees have 
applications to the design 
of communication 
networks

 A spanning forest of a 
graph is a spanning 
subgraph that is a forest

Graph

Spanning tree

29
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Depth-First Search
 Depth-first search (DFS) 

is a general technique 
for traversing a graph

 A DFS traversal of a 
graph G 
 Visits all the vertices and 

edges of G
 Determines whether G is 

connected
 Computes the connected 

components of G
 Computes a spanning 

forest of G

 DFS on a graph with n
vertices and m edges takes 
O(n m ) time

 DFS can be further extended 
to solve other graph 
problems
 Find and report a path 

between two given 
vertices

 Find a cycle in the graph
 Depth-first search can be 

done iteratively or 
recursively, and the results 
are different if a node has 
multiple children.

Depth-First Traversal with Marking
DFS_recur(Node: node)

<Process node>

node.Visited = True

for each edge in node.Edges

if (not edge.toNode.Visited) then

DFS_recur(edge.toNode)

edge.toNode.parent = node

end if

end for

end DFS_recur

Complexity: O(n + m), 

n and m are the numbers of nodes and edges, resp.

31
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Depth-First Traversal with Time-Stamp

DFS_recur(Node: node)

<Process node>

node.StartTime = ++time  // time is global

for each edge in Edges

if (edge.toNode.StartTime == 0) then

DFS_recur(edge.toNode)

edge.toNode.parent = node

end if

end for

node.FinishTime = ++time // optional

end DFS_recur

Color of a node: white if StartTime is undefined; gray if StartTime is defined but 
FinishTime is undefined; black if FinishTime is defined.

34

Example

DB

A

C

E

DB

A

C

E

DB

A

C

E

tree (discovery) edge
back edge

A visited vertex
A unexplored vertex

unexplored edge
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Example (cont.)

DB

A

C

E

DB

A

C

E

DB

A

C

E

DB

A

C

E

Non-Recursive DFS 
DepthFirstTraverse(Node: start_node)

start_node.Visited = True   // Visit this node.

// Make a stack and put the start node in it.

Stack[Node]: stack;    stack.Push(start_node);

// Repeat as long as the stack isn’t empty.

while not stack.IsEmpty() do

Node node = stack.Pop() // Get the next node from the stack.

for each edge in node.Edges // Process the node’s Edges.

// if toNode hasn’t been visited…

if (not Edge.toNode.Visited) then

// Mark the node as visited and may set StartTime

Edge.toNode.Visited = True

Edge.toNode.parent = node

stack.Push(Edge.toNode) // Push the node onto the stack.

end if

end for   // may set FinishTime of node.

end while // Continue processing the stack until empty

end DepthFirstTraverse

3 stages of a node: not visited (white), in stack (grey), exited stack (black)

35
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Depth-First Search
 Starting from a, give the finishing time for each 

vertex when the recursive DFS is used.
 Repeat the above exercise when non-recursive 

DFS is used. 

d

e

c b g

f

a

h

i

j

Possible Quiz Question
 Starting from A, using Depth-First Search to give 

the finishing time for each vertex when the 
recursive DFS is used. Neighbors of any vertex 
are listed in alphabet order.

 Repeat the above exercise when non-recursive 
DFS is used. 

37
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DFS and Maze Traversal 
 The DFS algorithm is 

similar to a classic 
strategy for exploring 
a maze
 We mark each 

intersection, corner 
and dead end (vertex) 
visited

 We mark each corridor 
(edge ) traversed

 We keep track of the 
path back to the 
entrance (start vertex) 
by means of a rope 
(recursion stack)

40

Properties of DFS
Property 1

DFS(G, v) visits all the 
vertices and edges in the 
connected component of v

Property 2
The tree  (discovery) 
edges labeled by DFS(G, 
v) form a spanning tree of 
the connected component 
of v  (Recursive and Non-
recursive DFS produce 
different trees, and different 
start and finish times).

DB

A

C

E

39
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The General DFS Algorithm
 Perform a DFS from each unexplored vertex, 

and produce a forest of DFS trees:

41

42

Analysis of DFS
 Setting/getting a vertex/edge label takes O(1) time
 Each vertex is labeled twice 

 once as UNEXPLORED initially 
 once as VISITED

 Each edge in an undirected graph is seen twice
 once as TREE (i.e., DISCOVERY edge)
 once as BACK

 Each edge in a directed graph is seen once
 as TREE, BACK, CROSS, or FORWARD edges

 DFS runs in O(n  m) time if the graph is represented 
by the adjacency list structure
 Recall that v deg(v) 2m

41
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Breadth-First Search
 Breadth-first search 

(BFS) is a general 
technique for traversing 
a graph

 A BFS traversal of a 
graph G 
 Visits all the vertices and 

edges of G
 Determines whether G is 

connected
 Computes the connected 

components of G
 Computes a spanning 

forest of G

 BFS on a graph with n
vertices and m edges 
takes O(n m ) time

 BFS can be further 
extended to solve other 
graph problems
 Find and report a path 

with the minimum 
number of edges 
between two given 
vertices 

 Find a simple cycle, if 
there is one

44

Example

CB

A

E

D

discovery edge
cross edge

A visited vertex
A unexplored vertex

unexplored edge

L0

L1

F

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F
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Example (cont.)

CB

A

E

D

L0

L1

F

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2
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Example (cont.)

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

L0

L1

F
L2
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Properties
Notation

Gs: connected component of s
Property 1

BFS(G, s) visits all the vertices and 
edges of Gs

Property 2
The discovery edges labeled by 
BFS(G, s) form a spanning tree Ts
of Gs

Property 3
For each vertex v in Li
 The path of  Ts from s to v has i

edges 
 Every path from s to v in Gs has at 

least i edges

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

48

BFS Algorithm
 The algorithm uses “levels” Li and  a mechanism for setting and getting 

“labels” of vertices and edges.

47
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Breadth-First Traversal
BreadthFirstTraverse(Node: start_node)

start_node.Visited = True   // Visit this node.

// Make a stack and put the start node in it.

Queue[Node]: queue;    queue.add(start_node);

// Repeat as long as the stack isn’t empty.

While <queue isn’t empty>

Node node = queue.remove() // Get the next node from the queue.

// Process the node’s Edges.

For each edge In node.Edges

// if toNode hasn’t been visited…

If (Not Edge.toNode.Visited) Then

// Mark the node as visited and set StartTime

Edge.toNode.Visited = True

// Push the node onto the stack.

stack.Push(Edge.toNode)

End If

End for   // Set FinishTime of node.

Loop // Continue processing the queue until empty

End DepthFirstTraverse

3 stages of a node: not visited (white), in queue (grey), exited queue (black)

50

Analysis
 Setting/getting a vertex/edge label takes O(1) time
 Each vertex is labeled twice 

 once as UNEXPLORED
 once as VISITED

 Each edge is labeled twice
 once as UNEXPLORED
 once as DISCOVERY or CROSS

 Each vertex is inserted once into a sequence Li

 Method incidentEdges is called once for each vertex
 BFS runs in O(n  m) time provided the graph is 

represented by the adjacency list structure
 Recall that v deg(v) 2m

49
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Applications
 We can use the BFS traversal algorithm, for a 

graph G, to solve the following problems in 
O(n  m) time
 Compute the connected components of G
 Compute a spanning forest of G
 Find a simple cycle in G, or report that G is a 

forest
 Given two vertices of G, find a path in G between 

them with the minimum number of edges, or 
report that no such path exists

52

DFS vs. BFS

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

Applications DFS BFS
Spanning forest, connected 
components, paths, cycles  

Shortest paths 

Biconnected components 

51
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DFS vs. BFS (cont.)
Back edge (v,w)

 w is an ancestor of v in 
the DFS tree

Cross edge (v,w)
 w is in the same level as 

v or in the next level

CB

A

E

D

L0

L1

F
L2

CB

A

E

D

F

DFS BFS

54

Recall: Digraphs
 A digraph is a 

shorthand for 
directed graph whose 
edges are all directed

 Applications
 one-way streets
 flights
 task scheduling A

C

E

B

D

53
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Digraph Properties

 A graph G=(V,E) such that
 Each edge goes in one direction:
 Edge (a, b) goes from a to b, but not b to a

 If G is simple, m  n(n  1)

 If we keep in-edges and out-edges in separate 
adjacency lists, we can perform listing of 
incoming edges and outgoing edges in time 
proportional to their size

A

C

E

B

D

56

Digraph Application
 Scheduling: edge (a,b) means task a must be 

completed before b can be started

The good life
cs4330, cs4340
cs4350, …

cs2820

cs3330 cs3620cs2260

cs2230cs2210cs1210

cs4640

cs3820

cs3640

55
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DFS for Directed Graphs
 We can specialize the traversal 

algorithms (DFS and BFS) to 
digraphs by traversing edges only 
along their direction

 In the directed DFS algorithm, we 
have four types of edges
 tree edges 
 back edges
 forward edges
 cross edges 

 A directed DFS starting at a vertex 
s determines the vertices 
reachable from s

AA

CC

EE

BB

DD

A

C

E

B

D

Edge classification by DFS
Tree edges: parent to child
Forward edges: descendent to ancestor
Back edges: descendent to ancestor
Cross edges: none of above

b

a

d

c

The edge classification 
depends on the 
particular DFS tree!
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Edge classification by DFS

b

a

c

b

a

c
Both are valid

The edge classification 
depends on the 
particular DFS tree!

Tree edges: parent to child
Forward edges: descendent to ancestor
Back edges: descendent to ancestor
Cross edges: none of above

Edge classification by DFS
Edge (u,v) of G is classified as:

(1) Tree edge iff u discovers v during the DFS: P[v] = u

i.e., v.StartTime is undefined (v is white).

If (u,v) is NOT a tree edge then it is:
(2) Back edge iff u is a descendant of v in the DFS tree

i.e., v.FinishTime is undefined (v is grey).
(3) Forward edge iff u is an ancestor of v in the DFS tree

i.e., v.FinishTime is defined (v is black) and 
u.StartTime < v.StartTime and P[v] != u

(4) Cross edge iff u is neither an ancestor nor a descendant of v
i.e. v.FinishTime is defined (v is black) and 
u.StartTime > v.FinishTime (v is black).
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Reachability
 DFS tree rooted at v: vertices reachable 

from v via directed paths

A

C

E

B

D

F
A

C

E D

A

C

E

B

D

F

DAGs and back edges

 Can there be a back edge in a DFS on a 
Directed Acyclic Graph (DAG)?

 NO! Back edges form a cycle!
 A graph G is a DAG <=> there is no back 

edge classified by DFS(G)
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DAGs and Topological Ordering
 A directed acyclic graph (DAG) is a 

digraph that has no directed cycles
 A topological ordering of a digraph 

is a numbering 
v1 , …, vn

of the vertices such that for every 
edge (vi , vj), we have i  j

 Example: in a task scheduling 
digraph, a topological ordering a 
task sequence that satisfies the 
precedence constraints

Theorem
A digraph admits a topological 
ordering if and only if it is a DAG

B

A

D

C

E

DAG G

B

A

D

C

E

Topological 
ordering of G

v1

v2

v3

v4 v5

64

write c.s. program

play

Topological Sorting
 Number vertices, so that (u,v) in E implies u < v

wake up

eat

nap

study computer sci.

more c.s.

work out

sleep
dream about graphs

A typical student day1

2 3

4 5

6

7

8

9

10
11

bake cookies
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 Note: This algorithm is different than the 
one in the book

 Running time: O(n + m)

Algorithm for Topological Sorting

Algorithm TopologicalSort(G)
H  G // Temporary copy of G
t  1
while H is not empty do

Let v be a vertex with no ingoing edges
Label v  t
t  t + 1
Remove v from H

66

Topological Sorting Example

a

g

d

h

ef

b

c

i
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Topological sorting with DFS
 Simulate the algorithm by 

using depth-first search
 O(n+m) time.

Algorithm topologicalDFS(G, v)
Input graph G and a start vertex v of G
Output labeling of the vertices of G

in the connected component of v
setLabel(v, VISITED)
for all e  G.outEdges(v) 

{ outgoing edges }
w  theOtherEnd(v, e)
if getLabel(w) UNEXPLORED

{ e is a discovery edge }
topologicalDFS(G, w)

else
{ e is a forward or cross edge }

Label v with topological number t
t  t – 1

Algorithm topologicalDFS(G)
Input dag G
Output topological ordering of G

t  G.numVertices()
for all u  G.vertices()

setLabel(u, UNEXPLORED)
for all v  G.vertices()

if getLabel(v) UNEXPLORED
topologicalDFS(G, v)

Topological number = n – finishTime + 1

68

Topological Sorting Example
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Topological Sorting Example

9

70

Topological Sorting Example

8

9
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Topological Sorting Example

7
8

9
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Topological Sorting Example

7
8

6

9
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Topological Sorting Example

7
8

56

9

74

Topological Sorting Example

7

4

8

56

9
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Topological Sorting Example

7

4

8

56

3

9
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Topological Sorting Example
2

7

4

8

56

3

9
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Topological Sorting Example
2

7

4

8

56

1

3

9
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Strong Connectivity
 Each vertex can reach all other vertices

a

d

c

b

e

f

g
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Application: Networking
 A computer network can be modeled as a 

graph, where vertices are routers and edges 
are network connections between edges.

 A router can be considered critical if it can 
disconnect the network for that router to fail.

 It would be nice to identify which routers are 
critical.

 We can do such an identification by solving 
the biconnected components problem.

Strongly Connected Components
 Any directed graph can be partitioned into 

a unique set of strong components.
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Strongly Connected Components 

 The algorithm for finding the strong components 
of a directed graph G uses the transpose of the 
graph.
 The transpose GT has the same set of vertices 

V as graph G, but a new edge set consisting 
of the edges of G but with the opposite 
direction. 

Strongly Connected Components 

 Execute the depth-first search dfs() for the 
graph G which creates the list dfsList
consisting of the vertices in G in the reverse 
order of their finishing times.

 Generate the transpose graph GT.
 Using the order of vertices in dfsList, make 

repeated calls to dfs() for vertices in GT.  The 
list returned by each call is a strongly 
connected component of G.
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Strongly Connected Components 

Running Time of strongComponents()

 Recall that the depth-first search has running 
time O(V+E), and the computation for GT is 
also O(V+E). It follows that the running time 
for the algorithm to compute the strong 
components is O(V+E).
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dfsList: [A,  B,  C,  E,  D,  G,  F]
Using the order of vertices in dfsList, make successive
calls to dfs() for graph GT

Vertex A:  dfs(A) returns the list [A, C, B] of vertices reachable
from A in GT. 

Vertex E:   The next unvisited vertex in dfsList is E. Calling dfs(E)
returns the list [E]. 

Vertex D:  The next unvisited vertex in dfsList is D; dfs(D) returns
the list [D, F, G] whose elements form the last
strongly connected component.. 

Strongly Connected Components 

86

 Pick a vertex v in G
 Perform a DFS from v in G

 If there’s a w not visited, print “no”
 Let G’ be G with edges reversed
 Perform a DFS from v in G’

 If there’s a w not visited, print “no”
 Else, print “yes”

 Running time: O(n+m)

Strong Connectivity 
Algorithm

G:

G’:

a

d

c

b

e

f

g

a

d

c

b

e

f

g
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Separation Edges and Vertices
 Definitions

 Let G be a connected graph
 A separation edge (bridge edge) of G is an edge whose removal 

disconnects G 
 A separation (articulation) vertex of G is a vertex whose removal 

disconnects G 

 Example
 DFW, LGA and LAX are separation vertices
 (DFW,LAX) is a separation edge

ORD PVD

MIADFW

SFO

LAX

LGA

HNL

Finding Articulation (Separation) 
Points in a Graph
 A vertex v in an undirected graph G with more than 

two vertices is called an articulation point if there 
exist two vertices u and w different from v such that 
any path between u and w must pass through v.

 If G is connected, the removal of v and its incident 
edges will result in a disconnected subgraph of G.

 A graph is called biconnected if it is connected and 
has neither articulation points nor points of degree 1.

87
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Finding Articulation (Separation) 
Points in a Graph

 Example: c, b, g, h are articulation points. 

d

e

c b g

f

a

h

i

j

Finding Articulation (Separation) 
Points in a Graph

 To find the set of articulation points, we perform a 
depth-first search traversal on G. 

 During the traversal, we maintain two labels with each 
vertex v V :  [v] and  [v]. 

  [v] is simply v’s start time in the depth-first search 
algorithm.  [v] is initialized to  [v], but may change 
later on during the traversal.
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Finding Articulation (Separation) 
Points in a Graph

 For each vertex v visited, we let  [v] be the minimum of 
the following:

  [v]
  [u] for each vertex u such that (v, u) is a back edge
  [w] for each vertex w such that (v, w) is a tree edge

Thus, [v] is the smallest  of those points that 
v can reach through back edges or tree edges.

Finding Articulation (Separation) 
Points in a Graph

The articulation points are determined as follows:

• The root is an articulation point if and only if it has 
two or more children in the depth-first search tree.

• A vertex v other than the root is an articulation point 
if and only if v has a child w with  [w] [v].
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Finding Articulation (Separation) 
Points in a Graph
 Input: A connected undirected graph G=(V, E);
 Output: Boolean array artpoint[1…n] indicates the 

articulation points of G, if any.

 1. for each vertex vV
 2.     { [v]   0; artpoint[v]  false; }
 3. time 0; rootdegree 0; root  s ;
 4. dfs2(s ); // s is the start vertex

 dfs2 (v)
 2. [v]   [v]  ++time;  // [v] is the start time 
 3. for each edge (v, w) in v.Edges
 4.     if ([w] == 0) then // (v, w) is a tree edge 
 5.         p[w]  v ; dfs2(w);
 6.         if (v == root ) then // v is the root
 7.             ++rootdegree;
 8.             if rootdegree > 1 then artpoint [v] true;
 9.         else // v is not the root; 
 10.            [v]  min{ [v],  [w]};
 11.           if  [w]   [v] then artpoint [v] true;
 12.       end if;
 13.     else if (p[v] != w)     // (v, w) is a back edge 
 14.     then  [v]  min{ [v],  [w]};
 15.     end if;
 16. end for;

Finding Articulation (Separation) 
Points in a Graph
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 Example:

d

e

c b g

f

a

h

i

j

Finding Articulation (Separation) 
Points in a Graph

 Example: (c, b), (g, h), (h, i), (h, j) are bridges.

 An edge (u, v) is a bridge if u and v are either 
separation (articulation) points or degree 1.

d

e

c b g

f

a

h

i

j

How to find separation edges 
(bridges) in a Graph
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Biconnected Graph
 Equivalent definitions of a biconnected graph G

 Graph G has no separation edges and no separation vertices.
 For any two vertices u and v of G, there are two disjoint simple 

paths between u and v (i.e., two simple paths between u and v
that  share no other vertices or edges).

 For any two vertices u and v of G, there is a simple cycle 
containing u and v.

 Example ORD
PVD

MIADFW

SFO

LAX

LGA
HNL

Biconnected Components
 Biconnected component of a graph G

 A maximal biconnected subgraph of G, or
 A subgraph consisting of a separation edge of G and its end vertices

 Interaction of biconnected components
 An edge belongs to exactly one biconnected component
 A nonseparation vertex belongs to exactly one biconnected component
 A separation vertex belongs to two or more biconnected components

 Example of a graph with four biconnected components

ORD PVD

MIADFW

SFO

LAX

LGA

HNL
RDU
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Equivalence Classes
 An equivalence relation R on S induces a partition of the 

elements of S into equivalence classes.
 For undirected graph, connectivity is an equivalence 

relation on points, which generate classes of points 
(components). 
 Let V be the set of vertices of an undirected graph G
 Define the relation

C = { (v,w)  VV such that G has a path from v to w}
 Relation C is an equivalence relation
 The equivalence classes of relation C are the vertices in 

each connected component of graph G
 For directed graph, strong connectivity is an equivalence 

classes on points (strongly connected components).

100

Biconnectivity Relation
 Edges e and f of connected 

graph G are biconnected if
 e f, or
 G has a simple cycle 

containing e and f
Theorem:

The biconnectivity relation 
on the edges of a graph is 
an equivalence relation
Proof Sketch:
 The reflexive and 

symmetric properties 
follow from the definition

 For the transitive 
property, consider two 
simple cycles sharing an 
edge

a
b

g

c
j

d

e

f

i

Equivalence classes of biconnected
edges: {a}  {b, c, d, e, f}  {g, i, j}

a
b

g

c
j

d

e

f

i
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Biconnected Components
 The biconnected components of a graph G are the equivalence 

classes of edges with respect to the biconnectivity relation
 A biconnected component of G is the subgraph of G induced by an 

equivalence class of linked edges
 A separation edge is a single-element equivalence class of linked 

edges
 A separation vertex has incident edges in at least two distinct 

equivalence classes of linked edge

ORD PVD

MIADFW

SFO

LAX

LGA

HNL
RDU
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