Graph Terminology and Representations

Graphs

- A graph is a pair \((V, E)\), where
 - \(V\) is a set of nodes, called vertices
 - \(E\) is a collection of pairs of vertices, called edges
 - Vertices and edges are positions and store elements

- Example:
 - A vertex represents an airport and stores the three-letter airport code
 - An edge represents a flight route between two airports and stores the mileage of the route
Edge Types

- Directed edge
 - ordered pair of vertices \((u,v)\)
 - first vertex \(u\) is the origin
 - second vertex \(v\) is the destination
 - e.g., a flight
- Undirected edge
 - unordered pair of vertices \((u,v)\)
 - e.g., a flight route
- Directed graph
 - all the edges are directed
 - e.g., route network
- Undirected graph
 - all the edges are undirected
 - e.g., flight network
Applications

- **Electronic circuits**
 - Printed circuit board
 - Integrated circuit

- **Transportation networks**
 - Highway network
 - Flight network

- **Computer networks**
 - Local area network
 - Internet
 - Web

- **Databases**
 - Entity-relationship diagram
Terminology

- End vertices (or endpoints) of an edge
 - U and V are the endpoints of an edge

- Edges incident on a vertex
 - a, d, and b are incident on V

- Adjacent vertices
 - U and V are adjacent

- Degree of a vertex
 - X has degree 5

- Parallel edges
 - h and i are parallel edges

- Loop
 - j is a loop
Terminology (cont.)

- **Path**
 - sequence of alternating vertices and edges
 - begins with a vertex
 - ends with a vertex
 - each edge is preceded and followed by its endpoints

- **Simple path**
 - path such that all its vertices and edges are distinct

- **Examples**
 - $P_1=(V,b,X,h,Z)$ is a simple path
 - $P_2=(U,c,W,e,X,g,Y,f,W,d,V)$ is a path that is not simple
Terminology (cont.)

- **Cycle**
 - circular sequence of alternating vertices and edges
 - each edge is preceded and followed by its endpoints

- **Simple cycle**
 - cycle such that all its vertices and edges are distinct

- **Examples**
 - \(C_1 = (V, b, X, g, Y, f, W, c, U, a, 0) \) is a simple cycle
 - \(C_2 = (U, c, W, e, X, g, Y, f, W, d, V, a, 0) \) is a cycle that is not simple

- **Edges can be dropped if no multiple edges.**
Properties

Property 1
\[\sum_v \deg(v) = 2m \]
Proof: each edge is counted twice

Property 2
In an undirected graph with no loops and no multiple edges
\[m \leq n \frac{(n - 1)}{2} \]
Proof: each vertex has degree at most \((n - 1) \)

What is the bound for a directed graph?

Notation
- \(n \): number of vertices
- \(m \): number of edges
- \(\deg(v) \): degree of vertex \(v \)

Example
- \(n = 4 \)
- \(m = 6 \)
- \(\deg(v) = 3 \)
Vertices and Edges

- A **graph** is a collection of **vertices** and **edges**.
- A **Vertex** is can be an abstract unlabeled object or it can be labeled (e.g., with an integer number or an airport code) or it can store other objects.
- An **Edge** can likewise be an abstract unlabeled object or it can be labeled (e.g., a flight number, travel distance, cost), or it can also store other objects.
A relation R on the set A is a subset of $A \times A$.

There is 1-to-1 correspondence between R and (directed) $G = (A, R)$.

Example: Let $A = \{1, 2, 3, 4\}$. Which ordered pairs are in the relation $R = \{(a, b) \mid a < b\}$?

$$R = \{(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)\}$$
An edge of the form \((b, b)\) is called a loop.
How many different relations can we define on a set A with n elements?

A relation on a set A is a subset of $A \times A$.

How many elements are in $A \times A$?

The number of subsets that we can form out of a set with m elements is 2^m. Therefore, 2^{n^2} subsets can be formed out of $A \times A$.

Answer: We can define 2^{n^2} different relations on A. As a result, we have that much directed graphs on n points.

How many different undirected graphs over n points?
Properties of Relations

- **Definition:** A relation R on a set A is called **reflexive** if $(a, a) \in R$ for every element $a \in A$.

- The graph that each node has a loop represents a reflexive relation.

- **How many different loop-free directed graphs over n points?**
Properties of Relations

Definitions:

- A relation R on a set A is called **symmetric** if $(b, a) \in R$ whenever $(a, b) \in R$ for all $a, b \in A$.
 - Every undirected graph represents a symmetric relation.

- A relation R on a set A is called **antisymmetric** if $a = b$ whenever $(a, b) \in R$ and $(b, a) \in R$.
 - (N, \leq) is antisymmetric

- A relation R on a set A is called **asymmetric** if $(a, b) \in R$ implies that $(b, a) \notin R$ for all $a, b \in A$.
 - $(N, <)$ is asymmetric

- What is the relation between “antisymmetric” and “asymmetric”?
 - R is asymmetric iff R is antisymmetric and has no loops.
Properties of Relations

- **Definition:** A relation R on a set A is called **transitive** if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$ for $a, b, c \in A$.

- Whenever there is a path that goes from a to b, then there is an edge (a, b) in the graph, then the graph represents a transitive relation.

- Are the following relation on $\{1, 2, 3\}$ transitive?

 $$R = \{(1, 1), (1, 2), (2, 2), (2, 1), (3, 3)\}$$
Combining Relations

- **Definition:** Let R be a relation from a set A to a set B and S a relation from B to a set C. The **composite** of R and S is the relation consisting of ordered pairs (a, c), where $a \in A$, $c \in C$, and for which there exists an element $b \in B$ such that $(a, b) \in R$ and $(b, c) \in S$. We denote the composite of R and S by $S \circ R$.

- If $A = B = C$, and $S = R$, then $R \circ R$ can be written as R^2.

- If R is represented by a graph, then (a, b) is in R^2 iff there is a path of length 2 from a to b.

- In general, (a, b) is in R^k iff there is a path of length k from a to b.
Combining Relations

- **Definition:** Let R be a relation on the set A. The powers R^k, $k = 1, 2, 3, \ldots$, are defined inductively by
 - $R^1 = R$
 - $R^{k+1} = R^k \circ R$

- In other words: $R^k = R \circ R \circ \ldots \circ R$ (k times the letter R)

- The relation $R^* = R^1 \cup R^2 \cup R^3 \cup \ldots \cup R^{n-1}$, where n is the number of nodes, is called the **transitive closure** of R.

- To decide if (a, b) in R^*, we need to decide if there is a path from a to b in $G = (A, R)$.
Combining Relations

- **Theorem:** The relation R on a set A is transitive if and only if $R^k \subseteq R$ for all positive integers k.

- Remember the definition of transitivity:
- **Definition:** A relation R on a set A is called transitive if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$ for $a, b, c \in A$.

- The composite of R with itself contains exactly these pairs (a, c).
- Therefore, for a transitive relation R, $R \circ R$ does not contain any pairs that are not in R, so $R \circ R \subseteq R$.
- Since $R \circ R$ does not introduce any pairs that are not already in R, it must also be true that $(R \circ R) \circ R \subseteq R$, and so on, so that $R^k \subseteq R$.
Equivalence Relations

- **Equivalence relations** are used to relate objects that are similar in some way.

- **Definition:** A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.

- Two elements that are related by an equivalence relation R are called **equivalent**.

- The best representation of an equivalence relation is Sets.
Adjacency List Structure

- Incidence sequence for each vertex
 - sequence of references to edge objects of incident edges

- Augmented edge objects
 - references to associated positions in incidence sequences of end vertices
Adjacency Matrix Structure

- Edge list structure
- Augmented vertex objects
 - Integer key (index) associated with vertex
- 2D-array adjacency array
 - Reference to edge object for adjacent vertices
 - Null for non-adjacent vertices
- The “old fashioned” version just has 0 for no edge and 1 for edge
Graph Representations

Option 1:

Class Node
 String: Name
 Boolean: Visited
 List<Node>: Neighbors
 List<Integer>: Costs
End Node

Option 2:

Class Node
 String: Name
 Boolean: Visited
 List<Edge>: Links
End Node

Class Edge
 Integer: Cost
 Node: toNode
 Node: fromNode
End Link
Performance

(All bounds are big-oh running times, except for “Space”)

- n vertices, m edges
- no parallel edges
- no self-loops

<table>
<thead>
<tr>
<th></th>
<th>Edge List</th>
<th>Adjacency List</th>
<th>Adjacency Matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space</td>
<td>$n + m$</td>
<td>$n + m$</td>
<td>n^2</td>
</tr>
<tr>
<td>incidentEdges(v)</td>
<td>m</td>
<td>deg(v)</td>
<td>n</td>
</tr>
<tr>
<td>areAdjacent (v, w)</td>
<td>m</td>
<td>min(deg(v), deg(w))</td>
<td>1</td>
</tr>
<tr>
<td>insertVertex(o)</td>
<td>1</td>
<td>1</td>
<td>n^2</td>
</tr>
<tr>
<td>insertEdge(v, w, o)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>removeVertex(v)</td>
<td>m</td>
<td>deg(v)</td>
<td>n^2</td>
</tr>
<tr>
<td>removeEdge(e)</td>
<td>1</td>
<td>deg(v)</td>
<td>1</td>
</tr>
</tbody>
</table>
Subgraphs

- A subgraph S of a graph G is a graph such that
 - The vertices of S are a subset of the vertices of G
 - The edges of S are a subset of the edges of G
- A spanning subgraph of G is a subgraph that contains all the vertices of G
A fundamental kind of algorithmic operation that we might wish to perform on a graph is **traversing the edges and the vertices** of that graph.

A **traversal** is a systematic procedure for exploring a graph by examining all of its vertices and edges.

For example, a **web crawler**, which is the data collecting part of a search engine, must explore a graph of hypertext documents by examining its vertices, which are the documents, and its edges, which are the hyperlinks between documents.

A traversal is efficient if it visits all the vertices and edges in linear time.
Connectivity

- A graph is connected if there is a path between every pair of vertices.
- A connected component of a graph G is a maximal connected subgraph of G.

Connected graph

Non connected graph with two connected components
A (free) tree is an undirected graph \(T \) such that:
- \(T \) is connected
- \(T \) has no cycles

This definition of tree is different from the one of a rooted tree.

A forest is an undirected graph without cycles.

The connected components of a forest are trees.
Spanning Trees and Forests

- A spanning tree of a connected graph is a spanning subgraph that is a tree
- A spanning tree is not unique unless the graph is a tree
- Spanning trees have applications to the design of communication networks
- A spanning forest of a graph is a spanning subgraph that is a forest
Depth-First Search

- Depth-first search (DFS) is a general technique for traversing a graph.
- A DFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G
- DFS on a graph with n vertices and m edges takes $O(n + m)$ time.
- DFS can be further extended to solve other graph problems:
 - Find and report a path between two given vertices
 - Find a cycle in the graph
- Depth-first search is to graphs what Euler tour is to binary trees.
Depth-First Traversal with Marking

Traverse(Node: node)
 <Process node>
 node.Visited = True
 For each edge In Links
 If (Not edge.toNode.Visited) Then
 Traverse(edge.toNode)
 End If
 End For
End Traverse

Complexity: $O(n + m)$,
n and m are the numbers of nodes and edges, resp.
Depth-First Traversal with Time-Stamp

Traverse(Node: node)
 <Process node>
 node.StartTime = ++time // time is global
 For Each edge In Links
 If (edge.toNode.StartTime == 0) Then
 Traverse(edge.toNode)
 End If
 end for
 node.FinishTime = ++time // optional
End Traverse

Color of a node: white if StartTime is undefined; gray if StartTime is defined but FinishTime is undefined; black if FinishTime is defined.
Example

unexplored vertex
visited vertex
unexplored edge
discovery edge
back edge
Example (cont.)

[Diagram of network with nodes A, B, C, D, E and arrows indicating connections between them.]

[Diagram of another network with nodes A, B, C, D, E and arrows indicating different connections.]
Non-Recursive DF Traversal

DepthFirstTraverse(Node: start_node)

start_node.Visited = True // Visit this node.
// Make a stack and put the start node in it.
Stack[Node]: stack; stack.Push(start_node);
// Repeat as long as the stack isn’t empty.
While <stack isn’t empty>
 Node node = stack.Pop() // Get the next node from the stack.
 // Process the node’s links.
 For each edge In node.Links
 // if toNode hasn’t been visited...
 If (Not link.toNode.Visited) Then
 // Mark the node as visited and set StartTime
 link.toNode.Visited = True
 // Push the node onto the stack.
 stack.Push(link.toNode)
 End If
 End for // Set FinishTime of node.
 Loop // Continue processing the stack until empty
End DepthFirstTraverse

3 stages of a node: not visited (white), in stack (grey), exited stack (black)
Non-Recursive DF Traversal

DepthFirstTraverse(Node: start_node)

start_node.start = ++time // Visit this node.
// Make a stack and put the start node in it.
Stack[Node]: stack; stack.Push(start_node);
// Repeat as long as the stack isn’t empty.
While <stack isn’t empty>
 Node node = stack.Pop() // Get the next node from the stack.
 // Process the node’s links.
 For each edge In node.Links
 // if toNode hasn’t been visited...
 If (link.toNode.start < 1) Then
 // Mark the node as visited and set StartTime
 link.toNode.start = ++time
 // Push the node onto the stack.
 stack.Push(link.toNode)
 End If
 End for // Set FinishTime of node.
 node.finish = ++time
End While // Continue processing the stack until empty
End DepthFirstTraverse
Depth-First Search

- Example:
DFS and Maze Traversal

- The DFS algorithm is similar to a classic strategy for exploring a maze
 - We mark each intersection, corner and dead end (vertex) visited
 - We mark each corridor (edge) traversed
 - We keep track of the path back to the entrance (start vertex) by means of a rope (recursion stack)
Properties of DFS

Property 1

\(DFS(G, v) \) visits all the vertices and edges in the connected component of \(v \)

Property 2

The discovery (tree) edges labeled by \(DFS(G, v) \) form a spanning tree of the connected component of \(v \)
The General DFS Algorithm

- Perform a DFS from each unexplored vertex:

Algorithm DFS(G):

Input: A graph G

Output: A labeling of the vertices in each connected component of G as explored

Initially label each vertex in G as unexplored

for each vertex, v, in G do
 if v is unexplored then
 DFS(G, v)
Analysis of DFS

- Setting/getting a vertex/edge label takes $O(1)$ time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or BACK
- Method incidentEdges is called once for each vertex
- DFS runs in $O(n + m)$ time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_v \text{deg}(v) = 2m$
Breadth-First Search

- Breadth-first search (BFS) is a general technique for traversing a graph
- A BFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G

- BFS on a graph with \(n \) vertices and \(m \) edges takes \(O(n + m) \) time
- BFS can be further extended to solve other graph problems
 - Find and report a path with the minimum number of edges between two given vertices
 - Find a simple cycle, if there is one
Example

unexplored vertex
visited vertex
unexplored edge
discovery edge
cross edge
Example (cont.)
Example (cont.)
Properties

Notation

\(G_s \): connected component of \(s \)

Property 1

\(\text{BFS}(G, s) \) visits all the vertices and edges of \(G_s \)

Property 2

The discovery edges labeled by \(\text{BFS}(G, s) \) form a spanning tree \(T_s \) of \(G_s \)

Property 3

For each vertex \(v \) in \(L_i \)

- The path of \(T_s \) from \(s \) to \(v \) has \(i \) edges
- Every path from \(s \) to \(v \) in \(G_s \) has at least \(i \) edges
BFS Algorithm

- The algorithm uses “levels” L_i and a mechanism for setting and getting “labels” of vertices and edges.

Algorithm BFS(G, s):

Input: A graph G and a vertex s of G

Output: A labeling of the edges in the connected component of s as discovery edges and cross edges

Create an empty list, L_0

Mark s as explored and insert s into L_0

$i \leftarrow 0$

While L_i is not empty do

create an empty list, L_{i+1}

For each vertex, v, in L_i do

For each edge, $e = (v, w)$, incident on v in G do

If edge e is unexplored then

If vertex w is unexplored then

Label e as a discovery edge

Mark w as explored and insert w into L_{i+1}

Else

Label e as a cross edge

$i \leftarrow i + 1$
Breadth-First Traversal

BreadthFirstTraverse(Node: start_node)

start_node.Visited = True // Visit this node.
// Make a stack and put the start node in it.
Queue[Node]: queue; queue.add(start_node);
// Repeat as long as the stack isn’t empty.
While <queue isn’t empty>
 Node node = queue.remove() // Get the next node from the queue.
 // Process the node’s links.
 For each edge In node.Links
 // if toNode hasn’t been visited...
 If (Not link.toNode.Visited) Then
 // Mark the node as visited and set StartTime
 link.toNode.Visited = True
 // Push the node onto the stack.
 stack.Push(link.toNode)
 End If
 End for // Set FinishTime of node.
 Loop // Continue processing the queue until empty
End DepthFirstTraverse

3 stages of a node: not visited (white), in queue (grey), exited queue (black)
Analysis

- Setting/getting a vertex/edge label takes $O(1)$ time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or CROSS
- Each vertex is inserted once into a sequence L_i
- Method incidentEdges is called once for each vertex
- BFS runs in $O(n + m)$ time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_v \deg(v) = 2m$
Applications

- We can use the BFS traversal algorithm, for a graph G, to solve the following problems in $O(n + m)$ time:
 - Compute the connected components of G
 - Compute a spanning forest of G
 - Find a simple cycle in G, or report that G is a forest
 - Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists
DFS vs. BFS

<table>
<thead>
<tr>
<th>Applications</th>
<th>DFS</th>
<th>BFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning forest, connected components, paths, cycles</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Shortest paths</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Biconnected components</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
DFS vs. BFS (cont.)

Back edge \((v, w)\)
- \(w\) is an ancestor of \(v\) in the tree of discovery edges

Cross edge \((v, w)\)
- \(w\) is in the same level as \(v\) or in the next level
Digraphs

- A **digraph** is a shorthand for directed graph whose edges are all directed
- Applications
 - one-way streets
 - flights
 - task scheduling
Digraph Properties

- A graph $G=(V,E)$ such that
 - Each edge goes in **one direction**:
 - Edge (a,b) goes from a to b, but not b to a
- If G is simple, $m \leq n \cdot (n - 1)$
- If we keep in-edges and out-edges in separate adjacency lists, we can perform listing of incoming edges and outgoing edges in time proportional to their size
Digraph Application

- **Scheduling**: edge \((a, b)\) means task \(a\) must be completed before \(b\) can be started.
Directed DFS

- We can specialize the traversal algorithms (DFS and BFS) to digraphs by traversing edges only along their direction.
- In the directed DFS algorithm, we have four types of edges:
 - discovery (tree) edges
 - back edges
 - forward edges
 - cross edges
- A directed DFS starting at a vertex s determines the vertices reachable from s.
Edge classification by DFS

The edge classification depends on the particular DFS tree!
Edge classification by DFS

Tree edges
Forward edges
Back edges
Cross edges

The edge classification depends on the particular DFS tree!

Both are valid
Edge classification by DFS

Edge \((u,v)\) of \(G\) is classified as:

1. **Tree edge** iff \(u\) discovers \(v\) during the DFS: \(P[v] = u\)

i.e., \(v\)'s StartTime is undefined (\(v\) is white).

If \((u,v)\) is NOT a tree edge then it is:

2. **Back edge** iff \(u\) is a descendant of \(v\) in the DFS tree

i.e., \(v\)'s FinishTime is undefined (\(v\) is grey).

3. **Forward edge** iff \(u\) is an ancestor of \(v\) in the DFS tree

i.e., \(v\)'s FinishTime is defined (\(v\) is black) and
 \(u\)'s StartTime < \(v\)'s StartTime and \(P[v] \neq u\)

4. **Cross edge** iff \(u\) is neither an ancestor nor a descendant of \(v\)

i.e. \(v\)'s FinishTime is defined (\(v\) is black) and
 \(u\)'s StartTime > \(v\)'s FinishTime (\(v\) is black).
Reachability

- DFS tree rooted at v: vertices reachable from v via directed paths
DAGs and back edges

- Can there be a back edge in a DFS on a Directed Acyclic Graph (DAG)?
- NO! Back edges form a cycle!
- A graph G is a DAG \iff there is no back edge classified by DFS(G)
DAGs and Topological Ordering

- A directed acyclic graph (DAG) is a digraph that has no directed cycles.
- A topological ordering of a digraph is a numbering v_1, \ldots, v_n of the vertices such that for every edge (v_i, v_j), we have $i < j$.
- Example: in a task scheduling digraph, a topological ordering a task sequence that satisfies the precedence constraints.

Theorem
A digraph admits a topological ordering if and only if it is a DAG.
Topological Sorting

- Number vertices, so that (u,v) in E implies u < v

A typical student day:

1. Wake up
2. Study computer sci.
3. Eat
4. Nap
5. More c.s.
6. Work out
7. Play
8. Write c.s. program
9. Bake cookies
10. Sleep
11. Dream about graphs
Algorithm for Topological Sorting

- Note: This algorithm is different than the one in the book

Algorithm TopologicalSort(G)

- $H \leftarrow G$ // Temporary copy of G
- $t \leftarrow 1$
- while H is not empty do
 - Let v be a vertex with no incoming edges
 - Label $v \leftarrow t$
 - $t \leftarrow t + 1$
 - Remove v from H

- Running time: $O(n + m)$
Implementation with DFS

- Simulate the algorithm by using depth-first search
- \(O(n+m)\) time.

Algorithm topologicalDFS\((G, v)\)

- **Input** graph \(G\) and a start vertex \(v\) of \(G\)
- **Output** labeling of the vertices of \(G\) in the connected component of \(v\)

```plaintext
setLabel\((v, VISITED)\)
for all \(e \in G\).outEdges\((v)\)
   { outgoing edges }
   \(w \leftarrow opposite(v,e)\)
   if getLabel\((w) = UNEXPLORED\)
      { \(e\) is a discovery edge }
      topologicalDFS\((G, w)\)
   else
      { \(e\) is a forward or cross edge }
      topologicalDFS\((G, v)\)

Label \(v\) with topological number \(t\)
\(t \leftarrow t - 1\)
```

Topological number = \(n - finishTime + 1\)
Topological Sorting Example
Strong Connectivity

- Each vertex can reach all other vertices
Application: Networking

- A computer network can be modeled as a graph, where vertices are routers and edges are network connections between edges.
- A router can be considered critical if it can disconnect the network for that router to fail.
- It would be nice to identify which routers are critical.
- We can do such an identification by solving the biconnected components problem.
Strongly Connected Components

- Any directed graph can be partitioned into a unique set of strong components.
Strongly Connected Components

The algorithm for finding the strong components of a directed graph G uses the transpose of the graph.

- The transpose G^T has the same set of vertices V as graph G, but a new edge set consisting of the edges of G but with the opposite direction.
Strongly Connected Components

- Execute the depth-first search dfs() for the graph G which creates the list dfsList consisting of the vertices in G in the reverse order of their finishing times.
- Generate the transpose graph G^T.
- Using the order of vertices in dfsList, make repeated calls to dfs() for vertices in G^T. The list returned by each call is a strongly connected component of G.
Strongly Connected Components

Graph G

Graph G^T
Running Time of strongComponents()

- Recall that the depth-first search has running time $O(V+E)$, and the computation for G^T is also $O(V+E)$. It follows that the running time for the algorithm to compute the strong components is $O(V+E)$.
Strongly Connected Components

dfsList: [A, B, C, E, D, G, F]

Using the order of vertices in dfsList, make successive calls to dfs() for graph G^T

Vertex A: dfs(A) returns the list [A, C, B] of vertices reachable from A in G^T.

Vertex E: The next unvisited vertex in dfsList is E. Calling dfs(E) returns the list [E].

Vertex D: The next unvisited vertex in dfsList is D; dfs(D) returns the list [D, F, G] whose elements form the last strongly connected component.
Strong Connectivity Algorithm

- Pick a vertex v in G
- Perform a DFS from v in G
 - If there’s a w not visited, print “no”
- Let G’ be G with edges reversed
- Perform a DFS from v in G’
 - If there’s a w not visited, print “no”
 - Else, print “yes”
- Running time: O(n+m)
Separation Edges and Vertices

- **Definitions**
 - Let G be a connected graph
 - A separation edge (bridge edge) of G is an edge whose removal disconnects G
 - A separation (articulation) vertex of G is a vertex whose removal disconnects G

- **Example**
 - DFW, LGA and LAX are separation vertices
 - (DFW,LAX) is a separation edge
Finding Articulation (Separation) Points in a Graph

- A vertex \(v \) in an undirected graph \(G \) with more than two vertices is called an articulation point if there exist two vertices \(u \) and \(w \) different from \(v \) such that any path between \(u \) and \(w \) must pass through \(v \).

- If \(G \) is connected, the removal of \(v \) and its incident edges will result in a disconnected subgraph of \(G \).

- A graph is called biconnected if it is connected and has neither articulation points nor points of degree 1.
Finding Articulation (Separation) Points in a Graph

- Example: c, b, g, h are articulation points.
Finding Articulation (Separation) Points in a Graph

- To find the set of articulation points, we perform a depth-first search traversal on G.

- During the traversal, we maintain two labels with each vertex $v \in V$: $\alpha[v]$ and $\beta[v]$.

- $\alpha[v]$ is simply v’s start time in the depth-first search algorithm. $\beta[v]$ is initialized to $\alpha[v]$, but may change later on during the traversal.
Finding Articulation (Separation) Points in a Graph

- For each vertex v visited, we let $\beta[v]$ be the minimum of the following:
 - $\alpha[v]$
 - $\alpha[u]$ for each vertex u such that (v, u) is a back edge
 - $\beta[w]$ for each vertex w such that (v, w) is a tree edge

Thus, $\beta[v]$ is the smallest α of those points that v can reach through back edges or tree edges.
Finding Articulation (Separation) Points in a Graph

The articulation points are determined as follows:

- The root is an articulation point if and only if it has two or more children in the depth-first search tree.

- A vertex v other than the root is an articulation point if and only if v has a child w with $\beta[w] \geq \alpha[v]$.
Finding Articulation (Separation) Points in a Graph

- **Input**: A connected undirected graph $G=(V, E)$;
- **Output**: Boolean array $artpoint[1…n]$ indicates the articulation points of G, if any.

1. for each vertex $v \in V$
2. { $\alpha[v] \leftarrow 0$; $artpoint[v] \leftarrow false$; }
3. $time \leftarrow 0$; $rootdegree \leftarrow 0$;
4. $dfs2(s)$; // s is the start vertex
Finding Articulation (Separation) Points in a Graph

1. \(dfs2(v) \)
2. \(\alpha[v] \leftarrow \beta[v] \leftarrow ++time; \)
3. for each edge \((v, w) \in E\)
4. if \(\alpha[w] == 0\) then // \((v, w)\) is a tree edge
5. \(p[w] \leftarrow v; dfs2(w); \)
6. if \(v == s\) then // \(v\) is the root
7. \(\text{rootdegree} \leftarrow \text{rootdegree} + 1; \)
8. if \(\text{rootdegree} == 2\) then \(\text{artpoint}[v] \leftarrow \text{true}; \)
9. else // \(v\) is not the root
10. \(\beta[v] \leftarrow \min\{\beta[v], \beta[w]\}; \)
11. if \(\beta[w] \geq \alpha[v]\) then \(\text{artpoint}[v] \leftarrow \text{true}; \)
12. end if;
13. else if \((p[v] != w)\) // \((v, w)\) is a back edge
14. then \(\beta[v] \leftarrow \min\{\beta[v], \alpha[w]\}; \)
15. end if;
16. end for;
Finding Articulation (Separation) Points in a Graph

- Example:
How to find separation edges (bridges) in a Graph

- Example: (c, b), (g, h), (h, i), (h, j) are bridges.

- An edge \((u, v)\) is a bridge if \(u\) and \(v\) are either separation (articulation) points or degree 1.
Biconnected Graph

- Equivalent definitions of a biconnected graph G
 - Graph G has no separation edges and no separation vertices.
 - For any two vertices u and v of G, there are two disjoint simple paths between u and v (i.e., two simple paths between u and v that share no other vertices or edges).
 - For any two vertices u and v of G, there is a simple cycle containing u and v.

- Example
Biconnected Components

- Biconnected component of a graph G
 - A maximal biconnected subgraph of G, or
 - A subgraph consisting of a separation edge of G and its end vertices

- Interaction of biconnected components
 - An edge belongs to exactly one biconnected component
 - A nonseparation vertex belongs to exactly one biconnected component
 - A separation vertex belongs to two or more biconnected components

- Example of a graph with four biconnected components
Equivalence Classes

- An equivalence relation R on S induces a partition of the elements of S into equivalence classes.
- For undirected graph, connectivity is an equivalence relation on points, which generate classes of points (components).
 - Let V be the set of vertices of an undirected graph G
 - Define the relation $C = \{ (v,w) \in V \times V \text{ such that } G \text{ has a path from } v \text{ to } w \}$
 - Relation C is an equivalence relation
 - The equivalence classes of relation C are the vertices in each connected component of graph G
- For directed graph, strong connectivity is an equivalence classes on points (strongly connected components).
Biconnectivity Relation

- Edges e and f of connected graph G are biconnected if
 - $e = f$, or
 - G has a simple cycle containing e and f

Theorem:
The biconnectivity relation on the edges of a graph is an equivalence relation

Proof Sketch:
- The reflexive and symmetric properties follow from the definition
- For the transitive property, consider two simple cycles sharing an edge

Equivalence classes of biconnected edges: \{a\} \{b, c, d, e, f\} \{g, i, j\}
Biconnected Components

- The biconnected components of a graph G are the equivalence classes of edges with respect to the biconnectivity relation.
- A biconnected component of G is the subgraph of G induced by an equivalence class of linked edges.
- A separation edge is a single-element equivalence class of linked edges.
- A separation vertex has incident edges in at least two distinct equivalence classes of linked edges.