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Dynamic Programming

Presentation for use with the textbook, Algorithm Design and 
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Terrible Fibonacci Computation

Fibonacci sequence:
f1=1
f2=1
f3=2
f4=3
f5=5
f6=8
f7=13
……

f(n)
1. if (n=1) or (n=2) then return 1;
2. else return f(n-1)+f(n-2);

This algorithm is far from being 
efficient, as there are many duplicate 
recursive calls to the procedure.



Treat Space for Time

f(n)
1. if ((n=1) or (n=2)) return 1;
2. else {
3.     fn_1=1;
4.     fn_2=1;
5.     for i 3 to n {
6.         fn=fn_1+fn_2;
7.         fn_2=fn_1;
8.         fn_1=fn;
9.     }
10. }
11. return fn;

Time: n-2 additions (n)
Space: (1)

The main idea of 
dynamic 
programming

Dynamic Programming
An algorithm that employs the dynamic programming 
technique is not necessarily recursive by itself, but 
the underlying solution of the problem is usually 
started in the form of a recursive function.

This technique resorts to evaluating the recurrence in 
a bottom-up manner, storing intermediate 
results that are used later on to compute the 
desired solution.

This technique applies to many combinatorial 
optimization problems to derive efficient 
algorithms.
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Task Scheduling 
Given: a set T of n tasks, start time, si and finish time, fi
(where si < fi)
Goal: Perform a maximum number of compatible jobs 
on a single machine.
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Greedy algorithm.  Consider jobs in increasing order of finish 
time. Take each job in the order, provided it's compatible with 
the ones already taken.

Implementation: O(n log n).
Let job j* denote the job that was added last to A.
Job j is compatible with A if sj fj*, i.e., j starts after j* finished. 

Sort jobs by finish times so that f1 f2 ... fn.
A
for j = 1 to n {

if (job j compatible with A)
A A {j}

}
return A

set of jobs selected 

Task Scheduling:  Greedy Algorithm



Telescope Scheduling Problem
Large, powerful telescopes are precious resources 
that are typically oversubscribed by the astronomers 
who request times to use them. 
This high demand for observation times is especially 
true, for instance, for a space telescope, which could 
receive thousands of observation requests per 
month. 
The start and finish times for an observation request 
are specified by the astronomer requesting the 
observation; the benefit of a request is determined 
by an administrator or a review committee.
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Telescope Scheduling Problem
The input to the telescope scheduling problem is a list, 
L, of observation requests, where each request, i, 
consists of the following elements:

a requested start time, si, which is the moment 
when a requested observation should begin
a finish time, fi, which is the moment when the 
observation should finish.
a positive numerical benefit, bi, which is an 
indicator of the scientific gain expected by 
performing this observation.

Task Scheduling is a special case of this problem 
where every task has the same benefit.
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Goal: 
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The left and right boundary of each rectangle represent the start and 
finish times for an observation request. The height of each rectangle 
represents its benefit. We list each request’s benefit (Priority) on the 
left. The optimal solution has total benefit 17=5+5+2+5.

How to maximize the total benefit of 
the observations that are performed 
by the schedule?

False Start 1: Brute Force
There is an obvious exponential-time algorithm 
for solving this problem, of course, which is to 
consider all possible subsets of L and choose 
the one that has the highest total benefit 
without causing any scheduling conflicts.
Implementing this brute-force algorithm would 
take O(n2n) time, where n is the number of 
observation requests.
We can do much better than this, however, by 
using other programming technique.
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False Start 2: Greedy Method
A natural greedy strategy would be to consider the 
observation requests ordered by non-increasing 
benefits, and include each request that doesn’t 
conflict with any chosen before it. 
This strategy doesn’t lead to an optimal solution, 
however. For instance, suppose we had a list containing just 3 
requests — one with benefit 100 that conflicts with two 
nonconflicting requests with benefit 75 each. 

The greedy method would choose the observation with 
benefit 100, whereas we can achieve a total benefit of 150 
by taking the two requests with benefit 75 each. 

How about ordering the observations by finish time?
Possible Quiz Question: Find a counter-example.  

11
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The General Dynamic 
Programming Technique

Applies to a problem that at first seems to 
require a lot of time (possibly exponential), 
provided we have:

Simple subproblems: the subproblems can be 
defined in terms of a few variables, such as i, j, k, 
and so on.
Subproblem optimality: the global optimum value 
can be defined in terms of optimal solutions of 
subproblem.
Subproblem overlap: the subproblems are not 
independent, but instead they overlap (hence, 
should be constructed bottom-up). 



13

Defining Simple Subproblems
A natural way to define general subproblems is to 
consider the observation requests according to some 
ordering, such as ordered by start times, finish times, or 
benefits. 
Unlike Greedy Method, we are allowed to undo our 
choices, instead of sticking to the greedy choice.
So let us order observations by finish times.
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Predecessors
For any request i, the set of other requests that conflict with i
cannot be in the solution if i is in the solution.
Define the predecessor, pred(i), for each request, i, then, to be 
the largest index, j < i, such that requests i and j don’t conflict. If 
there is no such index, then define the predecessor of i to be 0.
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Subproblem Optimality
A schedule that achieves the optimal value, Bi, either 
includes observation i or not.
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Subproblem is Overlapping
Bi = max{ Bi-1, Bpred(i) + bi } gives the final solution when i=n.
It has subproblem overlap. 
Thus, it is most efficient for us to use memoization when 
computing Bi values, by storing them in an array, B, which is 
indexed from 0 to n. 
Given the ordering of requests by finish times and an array, P, so 
that P[i] = pred(i), then we can fill in the array, B, using the 
following simple algorithm:

Predecessor of i
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Analysis of the Algorithm
It is easy to see that the running time of this algorithm 
is O(n), assuming the list L is ordered by finish times 
and we are given the predecessor for each request i. 
Of course, we can easily sort L by finish times if it is 
not already sorted according to this ordering – O(n 
log n).
To compute the predecessor of each request i, we 
search fi in L by binary search – O(n log n).
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Compute Predecessor
To compute the predecessor of each request i, we 
search fi in L by binary search on finish times –
O(n log n).

L: (0, 5), (2, 7), (6, 11), 
(4, 17), (13, 23), 
(24, 28), (9, 30).

2 is before (0, 5) finishes
6 is after (0, 5) finishes
4 is before (0, 5) finishes
13 is after (6, 11) …
24 is after (13, 23)  …
9 is after (2, 7) …
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What are in the optimal solution?
B[n] gives only the optimal total benefit value, not the 
actual choices, which can be computed from B[i].
This is typical for dynamic programming solutions.

How:

For j = n downto 1
if B[j] = B[j-1]  then

request j is not
chosen
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Subsequences
A subsequence of a character string 
x0x1x2…xn-1 is a string of the form 
xi1xi2…xik, where ij < ij+1.
Not the same as substring!
Example String: ABCDEFGHIJK

Subsequence: ACEGJIK
Subsequence: DFGHK
Not subsequence: DAGH
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The Longest Common 
Subsequence (LCS) Problem

Given two strings X and Y, the longest 
common subsequence (LCS) problem is to 
find a longest subsequence common to both 
X and Y
Has applications to DNA similarity testing 
(alphabet is {A,C,G,T})
Example: ABCDEFG and XZACKDFWGH have 
ACDFG as a longest common subsequence
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A Poor Approach to the 
LCS Problem

A Brute-force solution: 
Enumerate all subsequences of X
Test which ones are also subsequences of Y
Pick the longest one.

Analysis:
If X is of length n, then it has 2n

subsequences
This is an exponential-time algorithm!
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The General Dynamic 
Programming Technique

Applies to a problem that at first seems to 
require a lot of time (possibly exponential), 
provided we have:

Simple subproblems: the subproblems can be 
defined in terms of a few variables, such as j, k, l, 
m, and so on.
Subproblem optimality: the global optimum value 
can be defined in terms of optimal subproblems
Subproblem overlap: the subproblems are not 
independent, but instead they overlap (hence, 
should be constructed bottom-up).
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A Dynamic-Programming 
Approach to the LCS Problem

Define L[i,j] to be the length of the longest common 
subsequence of X[1..i] and Y[1..j].
Allow for 0 as an index, so L[0,k] = 0 and L[k,0]=0, to indicate 
that the null part of X or Y has no match with the other.
Then we can define L[i,j] in the general case as follows:
1. If xi=yj, then L[i,j] = L[i-1,j-1] + 1 (we can add this match)
2. If xi j, then L[i,j] = max{L[i-1,j], L[i,j-1]} (we have no 

match here)

Case 1: Case 2:
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LCS Algorithm
Algorithm LCS(X,Y ):
Input: Strings X and Y with n and m elements, respectively
Output: For i = 1,…,n, j = 1,...,m, the length L[i, j] of a longest string 

that is a subsequence of both the string X[1..i] = x1x2…xi  and the 
string Y [1.. j] = y1y2…yj

for i =1 to n do
L[i,0] = 0

for j =1 to m do
L[0,j] = 0

for i =1 to n do
for j =1 to m do

if xi = yj then
L[i, j] = L[i-1, j-1] + 1

else
L[i, j] = max{L[i-1, j] , L[i, j-1]}

return array L

L is an (n+1)x(m+1) matrix.
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Analysis of LCS Algorithm
We have two nested loops

The outer one iterates n times
The inner one iterates m times
A constant amount of work is done inside 
each iteration of the inner loop
Thus, the total running time is O(nm)

Answer is contained in L[n,m] (and the 
subsequence can be recovered from the 
L table).
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From L[i,j] to actual LCS
Algorithm getLCS(X,Y ):
Input: Strings X and Y with n and m elements, respectively
Output: One of the longest common subsequence of X and Y.

LCS(X,Y) /* Now, for i = 1,…,n, j = 1,...,m, the length L[i, j] of a longest 
string that is a subsequence of both the string X[1..i] = x1x2…xi  and 
the string Y [1.. j] = y0y1y2…yj */

i = n; j = m;  
S = new stack();
while (i > 0 && j > 0) do

if xi = yj then 
push(S, xi); i--; j--; 

else if L[i-1, j] > L[i, j-1]
i--;

else
j--;

return stack S
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LCS Algorithm Example
Example: 
A=“steal”, 
B=“staple”

What is the longest common 
subsequence of A and B?

Possible Quiz Question: 
What are the content of L[0..7, 0..8] after 
calling LCS(A, B), where 

A=“vehicle”, 
B=“vertices”



Application: DNA Sequence 
Alignment

DNA sequences can be viewed as strings of 
A, C, G, and T characters, which represent 
nucleotides.
Finding the similarities between two DNA 
sequences is an important computation 
performed in bioinformatics. 

For instance, when comparing the DNA of 
different organisms, such alignments can highlight 
the locations where those organisms have 
identical DNA patterns.
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Application: Edit Distance
What is the minimal of 

steps needed to convert one 
string to another?

ocurrance
occurrence o c u r r a n c e

c c u r r e n c eo

-

o c u r r n c e

c c u r r n c eo

- - a

e -

o c u r r a n c e

c c u r r e n c eo

-

6 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps



Minimal Edit Distance
Define D[i,j] to be the minimal edit distance of X[1..i] and Y[1..j].
Allow for 0 as an index, so D[0,j] = j and D[i,0]=i, to indicate that 
if one string is null, then the length of the other string is the edit 
distance.
Then we can define D[i,j] in the general case as follows:
1. If xi=yj, then D[i,j] = D[i-1,j-1]  (we can add this match)
2. If xi j, then D[i,j] = min{D[i-1,j]+1, D[i,j-1]+1, D[i-1,j-1]+1} 

(we have no match here)

gap        mismatch

+1, D[i++++ ,j 1]+1++[i 1,j1111 -1]+1++++

Possible Quiz Question:
Provide a complete algorithm for computing D[i,j] and 
analyze its complexity.
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Edit distance.  [Levenshtein 1966, Needleman-Wunsch 1970]
Gap penalty ; mismatch penalty pq.
Cost = sum of gap and mismatch penalties.

Applications.
Basis for Unix/Linux diff.
Speech recognition.
Computational biology.

Application: Edit Distance
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The General Dynamic 
Programming Technique

Applies to a problem that at first seems to 
require a lot of time (possibly exponential), 
provided we have:

Simple subproblems: the subproblems can be 
defined in terms of a few variables, such as j, k, l, 
m, and so on.
Subproblem optimality: the global optimum value 
can be defined in terms of optimal solutions of 
subproblem.
Subproblem overlap: the subproblems are not 
independent, but instead they overlap (hence, 
should be constructed bottom-up).

DP Problem Patterns
Telescope Scheduling Problem:

Bi = the max profit from the first i requests
Bi = max(Bi-1, Bpred(i) + bi )

Longest Common Subsequence Problem:
L[i,j] = the length of the longest common subsequence of X[1..i] 
and Y[1..j].
L[i,j] = L[i-1,j-1]+1 if X[i]=Y[j], max(L[i-1,j], L[i,j-1]) otherwise

Edit Distance Problem:
D[i,j] = the shortest distance of X[1..i] and Y[1..j].
D[i,j] = D[i-1,j-1] if X[i]=Y[j], min(D[i-1,j-1], D[i-1,j], D[i,j-1])+1 
otherwise



Coins in a Line
“Coins in a Line” is a game whose strategy is sometimes asked 
about during job interviews.
In this game, an even number, n, of coins, of various 
denominations, are placed in a line. 
Two players, who we will call Alice and Bob, take turns removing 
one of the coins from either end of the remaining line of coins.
The player who removes a set of coins with larger total value than 
the other player wins and gets to keep the money. The loser gets 
nothing.
Game goal: get the most.

3535333533333535555555555333533335555555553333333333355555553553333335353335555535333333533555555555555553355555333555553333333333333333333333333

If the value of the first 
coin is $4, how would 
Alice do?

False Start 1: Greedy Method
A natural greedy strategy is “always choose the 
largest-valued available coin.”
But this doesn’t always work:

[5, 10, 25, 10]: Alice chooses 10
[5, 10, 25]: Bob chooses 25
[5, 10]: Alice chooses 10
[5]: Bob chooses 5

Alice’s total value: 20, Bob’s total value: 30. (Bob wins, 
Alice loses)

36



False Start 2: Greedy Method
Another greedy strategy is “choose all odds or all 
evens, whichever is better.”
Alice can always win with this strategy, but won’t 
necessarily get the most money.
Example: [1, 3, 6, 3, 1, 3]
All odds = 1 + 6 + 1 = 8
All evens = 3 + 3 + 3 = 9
Alice’s total value: $9, Bob’s total value: $8.
Alice wins $9, but could have won $10.
How?

37
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The General Dynamic 
Programming Technique

Applies to a problem that at first seems to 
require a lot of time (possibly exponential), 
provided we have:

Simple subproblems: the subproblems can be 
defined in terms of a few variables, such as j, k, l, 
m, and so on.
Subproblem optimality: the global optimum value 
can be defined in terms of optimal subproblems
Subproblem overlap: the subproblems are not 
independent, but instead they overlap (hence, 
should be constructed bottom-up).
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Defining Simple Subproblems
Since Alice and Bob can remove coins from either end 
of the line, an appropriate way to define subproblems
is in terms of a range of indices for the coins, 
assuming they are initially numbered from 1 to n. 
Thus, let us define the following indexed parameter:

40

Subproblem Optimality
Let us assume that the values of the coins are stored 
in an array, V, so that coin 1 is of value V[1], coin 2 is 
of value V[2], and so on. 
Note that, given the line of coins from coin i to coin j, 
the choice for Alice at this point is either to take coin i
or coin j and thereby gain a coin of value V[i] or V[j]. 
Once that choice is made, play turns to Bob, who we 
are assuming is playing optimally. 

We should assume that Bob will make the choice 
among his possibilities that minimizes the total 
amount that Alice can get from the coins that 
remain.
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Subproblem Overlap
Alice should choose based on the following:

That is, we have initial conditions, for i=1,2,…,n-1:

And general equation:

4144

Decision Tree in Games: 
minimax tree

A

A A A A

B B

M2,7M3,8

M1,8

min{M3,8, M2,7} min{M2,7, M1,6}

M2,7 M1,6

take 1 take 8

take 2 take 8 take 1 take 7

take 3 take 8 take 7 take 7take 2 take 6

11



Example: [1, 3, 6, 3, 1, 3]
M:
i\j 2 3 4 5 6
1 3 ? ?
2 6 ?
3 6 ?
4 3
5 3

M[1,4] = max{
min{M[2,3], M[3,4]}+V[1],
min{M[1,2], M[2,3]}+V[4] }

= max{min{6, 6}+1, min{3,6}+3}
= max{7, 6} 
= 7

M[2,5] = max{
min{M[3,4], M[4,5]}+V[2],
min{M[2,3], M[3,4]}+V[5] }

= max{min{6, 3}+3, min{6,6}+1}
= max{6, 7} 
= 7

M[3,6] = max{
min{M[4,5], M[5,6]}+V[3],
min{M[3,4], M[4,5]}+V[6] }

= max{min{3, 3}+6, min{6,3}+3}
= max{9, 6} 
= 9
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CoinInALine Algorithm
Algorithm CoinInALine(X,Y ):
Input: a list of n coins with values V[i] for i=1 to n, n is even.
Output: For i = 1,…,n-1, j = i+1,...,n, M[i, j] stores the maximal values 

that Alice can get from coins i to j.

for i =1 to n-1 do // base case
M[i, i+1] = max(V[i], V[i+1])

for k = 3 to n-1 step 2 do
for i =1 to n-k do

j = i+k // [i, j] has (k+1) coins
v1 = min(M[i+1,j-1], M[i+2, j])
v2 = min(M[i,j-2], M[i+1, j-1]) 
M[i, j] = max(v1+V[i], v2+V[j])

return array M

4444444444444444444444444444444444
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Analysis of the Algorithm
We can compute the Mi,j values, then, using 
memoization, by starting with the definitions for the 
above initial conditions and then computing all the Mi,j’s

i i
+ 1 is 6, and so on. 
Since there are O(n) iterations in this algorithm and 
each iteration runs in O(n) time, the total time for this 
algorithm is O(n2). 
To recover the actual game strategy for Alice (and 
Bob), we simply need to note for each Mi,j whether 
Alice should choose coin i or coin j.

DP Problem Patterns
Telescope Scheduling Problem:

Bi = the max profit from the first i requests: b[1..i]
Bi = max(Bi-1, Bpred(i) + bi )

Longest Common Subsequence Problem:
Li,j = the length of the longest common subsequence of X[1..i] 
and Y[1..j].
Li,j = Li-1,j-1+1 if X[i]=Y[j], max(Li-1,j, Li,j-1) otherwise

Coin-in-a-line Problem:
Mi,j = the max possible value of Alice for coins in V[i..j].
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The General Dynamic 
Programming Technique

Applies to a problem that at first seems to 
require a lot of time (possibly exponential), 
provided we have:

Simple subproblems: the subproblems can be 
defined in terms of a few variables, such as j, k, l, 
m, and so on.
Subproblem optimality: the global optimum value 
can be defined in terms of optimal subproblems
Subproblem overlap: the subproblems are not 
independent, but instead they overlap (hence, 
should be constructed bottom-up).
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The 0/1 Knapsack Problem
Given: A set S of n items, with each item i having

wi - a positive weight
bi - a positive value

Goal: Choose items with maximum total value but with 
weight at most W.
If we are not allowed to take fractional amounts, then 
this is the 0/1 knapsack problem.

In this case, we let T denote the set of items we take

Objective: maximize

Constraint:

Ti
ib

Ti
i Ww
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Given: A set S of n items, with each item i having
bi - a positive value
wi - a positive weight

Goal: Choose items with maximum total value but with 
weight at most W.

Example

Weight:
value:

1 2 3 4 5

4 in 2 in 2 in 6 in 2 in
$20 $3 $6 $25 $80

Items:
box of width 9 in

Solution:
• item 5 ($80, 2 in)
• item 3 ($6, 2in)
• item 1 ($20, 4in)

knapsack
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A 0/1 Knapsack Algorithm, 
First Attempt

Sk: Set of items numbered 1 to k.
Define B[k] = best selection from Sk.
Problem: does not have subproblem optimality:

Consider set S={(3,2),(5,4),(8,5),(4,3),(10,9)} of
(value, weight) pairs and total weight W = 20

Best for S4:

Best for S5:
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A 0/1 Knapsack Algorithm, 
Second (Better) Attempt

Sk: Set of items numbered 1 to k.
Define B[k,w] to be the best selection from Sk with 
weight at most w
Good news: this does have subproblem optimality.

I.e., the best subset of Sk with weight at most w is 
either 

the best subset of Sk-1 with weight at most w or 
the best subset of Sk-1 with weight at most w wk plus item k

else}],1[],,1[max{
if],1[

],[
kk

k

bwwkBwkB
wwwkB

wkB
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0/1 Knapsack Example

n + 1

1
Value

18
22
28

1
Weight

5
6

6 2

7

Item
1

3
4
5

2

{ 1, 2 }

{ 1, 2, 3 }

{ 1, 2, 3, 4 }

{ 1 }

{ 1, 2, 3, 4, 5 }

0

0

0

0

0

0

0

1

0

1

1

1

1

1

2

0

6

6

6

1

6

3

0

7

7

7

1

7

4

0

7

7

7

1

7

5

0

7

18

18

1

18

6

0

7

19

22

1

22

7

0

7

24

24

1

28

8

0

7

25

28

1

29

9

0

7

25

29

1

34

10

0

7

25

29

1

34

11

0

7

25

40

1

40

W + 1

W = 11

OPT:  { 4, 3 }
value = 22 + 18 = 40

else}],1[],,1[max{
if],1[

],[
kk

k

bwwkBwkB
wwwkB

wkB

B[k,w]

We can use two rows 
for all k in B[k,w].
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0/1 Knapsack Algorithm

Recall the definition of 
B[k,w]
Running time: O(nW).
Not a polynomial-time 
algorithm since W is not 
the size of the input.
This is a pseudo-polynomial
time algorithm.
Only two rows of B[k,w] is 
needed: replace B[k, w] by 
B[k%2, w] will work.
So the space is O(W).

Algorithm 01Knapsack(S, W):
Input: set S of n items with value bi
and weight wi; maximum weight W
Output: value of best subset of S with 
weight at most W
for w 0 to W do B[0, w] 0
for k 1 to n do

B[k, 0] 0
for w 1 to W do

B[k, w] B[k-1, w]
if w wk &&

B[k-1, w wk] bk > B[k, w] then
B[k, w] B[k, w wk] bk

return B[n, W]

else}],1[],,1[max{
if],1[

],[
kk

k

bwwkBwkB
wwwkB

wkB
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0/1 Knapsack Algorithm

How to get the actual set of 
items?
First call 01Knapsack(S,
W) to get B[k,w].
Then call

01KS(S, B, n, W)
Running time: O(n).

Algorithm 01KS(S, B, k, w):
Input: set S of n items with value bi

and weight wi; maximum weight W
if w wk &&

B[n%2, w wk] bk == B[n%2, w]
01KS(S, B, k-1, w wk)
print(k)

else
01KS(S, B, k-1, w)

else}],1[],,1[max{
if],1[

],[
kk

k

bwwkBwkB
wwwkB

wkB



DP Problem Patterns
Longest Common Subsequence Problem:

Li,j = the length of the longest common subsequence of X[1..i] 
and Y[1..j].
Li,j = Li-1,j-1+1 if X[i]=Y[j], max(Li-1,j, Li,j-1) otherwise

Coin-in-a-line Problem:
Mi,j = the max possible value of Alice for coins in V[i..j].
___

0-1 Knapsack Problem:
B[k, w] = max value from the first k items under weight limit w.

jjjjjjjjjjj

_________________________________________________________________________________________ __

else}],1[],,1[max{
if],1[

],[
kk

k

bwwkBwkB
wwwkB

wkB
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The General Dynamic 
Programming Technique

Applies to a problem that at first seems to 
require a lot of time (possibly exponential), 
provided we have:

Simple subproblems: the subproblems can be 
defined in terms of a few variables, such as j, k, l, 
m, and so on.
Subproblem optimality: the global optimum value 
can be defined in terms of optimal solutions of 
subproblem.
Subproblem overlap: the subproblems are not 
independent, but instead they overlap (hence, 
should be constructed bottom-up).



Matrix Multiplication
Review: Matrix Multiplication.

C = A*B
A is d e and B is e f

O(def ) time
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Matrix multiplication
MATRIX-MULTIPLY (A,B)

if columns rows [B]
then error “incompatible dimensions”
else for 1 to rows [A]

for j 1 to columns [B]
C[i, j
for k to columns [A]

C[ i, j i, j] +A[ i, k]*B[ k, j]
return C 

Time: O(d·e·f ) if A is d e and B is e f.
Divide and Conquer can reduce it slightly.
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Matrix Chain-Products
Matrix Chain-Product:

Compute A=A0*A1*…*An-1
Ai is di di+1
Problem: How to parenthesize?

Example
B is 3 100
C is 100 5
D is 5 5
(B*C)*D takes 1500 + 75 = 1575 ops
B*(C*D) takes 1500 + 2500 = 4000 ops
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An Exhaustive Approach
Matrix Chain-Product Alg.:

Try all possible ways to parenthesize 
A=A0*A1*…*An-1
Calculate number of ops for each one
Pick the one that is best

Running time:
The number of paranethesizations is equal 
to the number of binary trees with n nodes
This is exponential!
It is called the Catalan number, and it is 
almost 4n.
This is a terrible algorithm!
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A Greedy Approach
Idea #1: repeatedly select the product that 
uses (up) the most operations.
Counter-example: 

A is 10 5
B is 5 10
C is 10 5
D is 5 10
Greedy idea #1 gives (A*B)*(C*D), which takes 
500+1000+500 = 2000 ops
A*((B*C)*D) takes 250+500+250 = 1000 ops
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Another Greedy Approach
Idea #2: repeatedly select the product that uses the fewest 
operations.
Counter-example: 

A is 200 10
B is 10 10
C is 10 100
D is 100 100
Greedy idea #2 gives (A*(B*C))*D which takes 
10000+200000+2000000=2,210,000 ops
(A*B)*(C*D) takes 20000+100000+200000=320,000 ops
A*((B*C)*D)) takes 10000+100000+200000=310,000 ops

The greedy approach is not giving us the optimal value.
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A Recursive Approach
Define subproblems:

Find the best parenthesization of Ai*Ai+1*…*Aj.
Let Ni,j denote the number of operations done by this 
subproblem.
The optimal solution for the whole problem is N0,n-1.

Subproblem optimality: The optimal solution can be 
defined in terms of optimal subproblems

There has to be a final multiplication (root of the expression 
tree) for the optimal solution.  
Say, the final multiply is at index i: (A0*…*Ai)*(Ai+1*…*An-1).
Then the optimal solution N0,n-1 is the sum of two optimal 
subproblems, N0,i and Ni+1,n-1 plus the time for the last 
multiplication.
If the global optimum did not have these optimal subproblems, 
we could define an even better optimal solution.

64

A Characterizing Equation
The global optimal has to be defined in terms of 
optimal subproblems, depending on where the final 
multiply is at.
Let us consider all possible places for that final multiply:

Recall that Ai is a di di+1 dimensional matrix.
So, a characterizing equation for Ni,j is the following:

Note that subproblems are not independent -- the 
subproblems overlap.

}{min 11,1,, jkijkkijkiji dddNNN
Ni,i = 0
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A Dynamic Programming 
Algorithm

Since subproblems
overlap, we don t
use recursion.
Instead, we 
construct optimal 
subproblems
bottom-up.

Ni,i s are 0, so start 
with them
Then do length 
2,3,… subproblems, 
and so on.
The running time is 
O(n3)

Algorithm matrixChain(S):
Input: sequence S of n matrices to be multiplied
Output: number of operations in an optimal 

paranethization of S
for i 0 to n-1 do

Ni,i 0
for b 1 to n-1 do

for i 0 to n-b-1 do
j i+b
Ni,j +infinity
for k i to j-1 do

Ni,j min{Ni,j , Ni,k +Nk+1,j +di dk+1 dj+1}
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answerN 0 1
0
1

2 …

n-1

…

n-1j

i

A Dynamic Programming 
Algorithm Visualization
The bottom-up
construction fills in the 
N array by diagonals
Ni,j gets values from 
pervious entries in i-th 
row and j-th column 
Filling in each entry in 
the N table takes O(n) 
time.
Total run time: O(n3)
Getting actual 
parenthesization can be 
done by remembering 
k for each N entry

}{min 11,1,, jkijkkijkiji dddNNN
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…
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The General Dynamic 
Programming Technique

Applies to a problem that at first seems to 
require a lot of time (possibly exponential), 
provided we have:

Simple subproblems: the subproblems can be 
defined in terms of a few variables, such as j, k, l, 
m, and so on.
Subproblem optimality: the global optimum value 
can be defined in terms of optimal solutions of 
subproblem.
Subproblem overlap: the subproblems are not 
independent, but instead they overlap (hence, 
should be constructed bottom-up).


