Lists and Iterators 10/22/2019

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Divide-and-Conquer

Divide-and-Conquer

o Divide-and conquer is a
general algorithm design
paradigm:

= Divide: divide the input data S in
two or more disjoint subsets S,
S5, ...
= Conquer: solve the subproblems
recursively
= Combine: combine the solutions
for S, S,, ..., into a solution for §
o The base case for the
recursion are subproblems of
constant size

o Analysis can be done using
recurrence equations

Lists and Iterators

Maxima Set Problem

o We can visualize various trade-offs for optimizing two-dimensional
data, such as points representing hotels according to their pool size
and restaurant quality, by plotting each as a two-dimensional point,
(x, y), where x is the pool size and y is the restaurant quality score.

o We say that such a point is a maximum point in a set if there is no
other point, (x’, y’), in that set such thatx < x’andy < y’.

o The maximum points are the best potential choices based on these

two dimensions and finding all of them is the maxima set problem.

We can efficiently find all

Res; rant : !I : 1
quality]'————i———:————:—
Here the maxima set is {A,H,1,G,D}. / o P

the maxima points
by divide-and-conquer.

T ——ey
-t e o
.C-: '

hdl

Pool size

Solving the Maxima Set Problem

point, (x’, y’), in Ssuch thatx < x’andy <

may divide S into two equal parts.

Restaurant
quality

y'.

--9,
.
...... [
.c-', 1 *
o
' 1
1 .B !
1 1
1 1
-=n
1

A

o A point (%, y) is a maximum point in S if there is no other

me®

---9G
L

E]

o To find a maxima set for a set, S, of n points in the plane, we

o We compare two points in S using a lexicographic ordering of the
points in S, that is, where we order based primarily on x-
coordinates and then by y-coordinates if there are ties.

D

Pool size

10/22/2019

Lists and Iterators

Divide-and-Conquer Solution

o Base case: If n < 1, the maxima set is just S itself.
o Divide: let p = (x,, Y,) be the median point in S according to the

lexicographic order. Then x = X, is a line dividing S into two halves.

o Conquer: we recursively solve the maxima-set problem for the set

of points on the left of this line and also for the points on the right.

o Combine:

= The maxima set of points on the right are also maxima points for
S.

Example for the Combine Step

Dominance point
______________ - / from the right

1

T

1

I

S e " @
N .
r T "r ---------- -9
1 1
) 1
]
]

10/22/2019

Lists and Iterators 10/22/2019

Divide-and-Conquer Solution

o Base case: If n < 1, the maxima set is just S itself.
o Divide: let p = (x,, Y,) be the median point in S according to the
lexicographic order. Then x = X, is a line dividing S into two halves.
o Conquer: we recursively solve the maxima-set problem for the set
of points on the left of this line and also for the points on the right.
o Combine:
= The maxima set of points on the right are also maxima points for
S.
= But some of the maxima points for the left set might be
dominated by a point from the right, namely the point, g, that is
leftmost.
= So then we do a scan of the left set of maxima, removing any
points that are dominated by g.

= The union of remaining set of maxima from the left and the
maxima set from the right is the set of maxima for S.

Pseudo-code

Algorithm MaximaSet(S):

Input: A set, S, of n points in the plane
Output: The set, M, of maxima points in S

if n <1 then

return S
Let p be the median point in S, by lexicographic (x, y)-coordinates
Let L be the set of points lexicographically less than p in S
Let G be the set of points lexicographically greater than or equal to p in S
M + MaximaSet(L)
My + MaximaSet(G)
Let g be the lexicographically smallest point in Mo
for each point, r, in M; do

if wf-<ete-and- y(r) < y(q) then

Remove r from My

return My U My

Lists and Iterators

A Little Implementation Detail

o There is the issue of how to efficiently find the point, p, that is the
median point in a lexicographical ordering of the points in S
according to their (x, y)-coordinates.

o There are two immediate possibilities:

= One choice is to use a linear-time median-finding algorithm,
such as that given in Section 9.2. O(n) for each recursive call.

= Another choice is to sort the points in S lexicographically by
their (x, y)-coordinates as a preprocessing step, prior to calling
the MaxmaSet algorithm on S. O(n log(n)) for preprocessing
and O(1) for each recursive call, to find the middle of the list.

Analysis

a In either case, the rest of the non-recursive steps can
be performed in O(n) time, so this implies that,
ignoring floor and ceiling functions, the running time
for the divide-and-conquer maxima-set algorithm can
be specified as follows (where b is a constant):

b ifn<2
I'(n)= ,
2T (n/2)+bn ifn>2

o Thus, according to the merge sort example, this
algorithm runs in O(n log n) time.

10

10/22/2019

Lists and Iterators

[terative Substitution

o In the iterative substitution, or “plug-and-chug,” technique, we

iteratively apply the recurrence equation to itself and see if we can
find a pattern: T(n) =2T(n/2)+bn

=2(2T(n/2*)) +b(n/2))+bn
=2"T(n/2%)+2bn
=2T(n/2%)+3bn
=2'T(n/2")+4bn

=2'T(n/2") +ibn
o Note that base, T(n)=b, case occurs when 2'=n. That is, i = log n.
a 5o, T(n)=bn+bnlogn

a Thus, T(n) is O(n log n).
11

The Recursion Tree

o Draw the recursion tree for the recurrence relation and look for a

pattern:
b ifn<2
T(n)= .
2T(n/2)+bn ifn=2
depth T's size time
0 1 n () bn
12 an [) [) ha
i 2 a2)))) br

Total time = bn + bn log n
(last level plus all previous levels)

12

10/22/2019

Lists and Iterators

Guess-and-Test Method

and then try to prove it is true by induction:

b ifn<2
T(n)= .
2T(n/2)+bn ifn>2

o Guess: T(n) < cnlog n.
T(n)=2T(n/2)+bn
<2(c(n/2)log(n/2))+bn
=cn(logn—log2)+bn

=cnlogn—cn+bn

=cnlogn—(c—b)n

o We can conclude that T(n) < cnlog nifc > b.

o In the guess-and-test method, we guess a closed form solution

13

Guess-and-Test Method

and then try to prove it is true by induction:

b if n<2
T(n)= .
2T (n/2)+bnlogn ifn>2

o Guess: T(n) < cn log n.
T(n)=2T(n/2)+bnlogn
<2(c(n/2)log(n/2))+bnlogn
=cn(logn—log2)+bnlogn

=cnlogn—cn+bnlogn

o Wrong: we cannot make this last line be less than cn log n

o In the guess-and-test method, we guess a closed form solution

14

10/22/2019

Lists and Iterators

Guess-and-Test Method, (cont.)

o Recall the recurrence equation:

b ifn<2
T(n)= .
2T(n/2)+bnlogn ifn=2

o Guess #2: T(n) < cn log? n.
T(n)=2T(n/2)+bnlogn
<2(c(n/2)log*(n/2))+bnlogn
=cn(logn—log2)* +bnlogn

=cnlog’ n—2cnlogn+cn+bnlogn

<cnlog’n if c > b.

o So, T(n) is O(n log? n).

o In general, to use this method, you need to have a good guess

and you need to be good at induction proofs.

15

Master Method

the form:

T(n) = c if n<d
D=1 aTn/b)+) ifn>d

o The Master Theorem:
1. if f(n)is O(n**“), then T'(n)is O(n'"*%*)

2. if f(n)is O(n"*“ log" n), then T(n) is O(n'**“ log"*" n)

3. if f(n)is Q(n'"°® "), then T'(n) is O(f(n)),
provided af (n/b) < df (n) forsomed <1.

a Many divide-and-conquer recurrence equations have

16

10/22/2019

Lists and Iterators

Master Method, Example 1

a The form: T(n)={ ¢ ff"<d
alT(n/b)+ f(n) ifn>d
o The Master Theorem:
1. if f(n)is O(n'**“), then T(n) is O(n'***)
2. if f(n)is O(n'"®“ log" n), then T(n) is O(n'"*“ log"™ n)
3. if f(n)is Q(n'** "), then T(n) is O(£ (n)),

provided af'(n/b) < df (n) forsome o <1.
o Example:

T(n)=4T(n/2)+n

Solution: log,a=2, so case 1 says T(n) is O(n?).

17

a The form: 7, :{ ¢ .if n<d
aT(n/b)+ f(n) ifn>d
o The Master Theorem:
1. if f(n)is O(n**“ %), then T'(n) is O(n'***)
2. if f(n)is O(n"** log" n), then T(n) is O(n"*“ log""' n)
3. if f(n)is Q(n'"®“*), then T(n) is O(f(n)),

provided af (n/b) < df (n) forsome o <1.
o Example:

T(n)=2T(n/2)+nlogn

Solution: log,a=1, so case 2 says T(n) is O(n log?n).

Master MEthOd, Example 5 2

18

10/22/2019

Lists and Iterators

Master Method, Example 3

a The form: T(n)={ ¢ ff"<d
alT(n/b)+ f(n) ifn>d
o The Master Theorem:
1. if f(n)is O(n'**“), then T(n) is O(n'***)
2. if f(n)is O(n'"®“ log" n), then T(n) is O(n'"*“ log"™ n)
3. if f(n)is Q(n'** "), then T(n) is O(£ (n)),

provided af'(n/b) < df (n) forsome o <1.
o Example:

T'(n)y=T(n/3)+nlogn

Solution: log,a=0, so case 3 says T(n) is O(n log n).

19

Master MEthOd, Example 4 2

a The form: 7, :{ ¢ .if n<d
al(n/b)+ f(n) ifn>d

o The Master Theorem:

1. if f(n)is O(n**“ %), then T'(n) is O(n'***)

2. if f(n)is O(n"** log" n), then T(n) is O(n"*“ log""' n)

3. if f(n)is Q(n'"®“*), then T(n) is O(f(n)),

provided af (n/b) < df (n) forsome o <1.

o Example:

T(n)=9T(n/3)+n’

Solution: log,a=2, so case 3 says T(n) is O(n3).

20

10/22/2019

10

Lists and Iterators

Master Method, Example 5 2

a The form: T(n)={ ¢ ff"<d
alT(n/b)+ f(n) ifn>d
o The Master Theorem:
1. if f(n)is O(n'**“), then T(n) is O(n'***)
2. if f(n)is O(n'"®“ log" n), then T(n) is O(n'"*“ log"™ n)
3. if f(n)is Q(n'** "), then T(n) is O(£ (n)),

provided af'(n/b) < df (n) forsome o <1.
o Example:

T'(n)=T(n/2)+1 (binary search)

Solution: log,a=0, so case 2 says T(n) is O(log n).

21

Possible Quiz Questions

Using Master Theorem, find solutions for the
following recurrence relations:

T(n)=2T(n/2)+logn

T(n)=8T(n/2)+n’

22

10/22/2019

11

Lists and Iterators

Possible Quiz Question

o Please design an efficient algorithm (as fast as
you can) which will merge n sorted lists of the
same length m, into a single sorted list. You
may use available function merge(A, B), which
returns a sorted list consisting of elements
from two sorted lists A and B, with cost O(|A]|
+ |B|), where |X] is the length of X, i.e., the
number of elements in X. Please analyze the
complexity of your algorithm in terms of n and
m.

23

Integer Addition

o Addition. Given two n-bit integers a and b, compute a
+ b.

o Grade-school. ©(n) bit operations.

i1 1 1 1 1 1 o0 1 carry
i1 1 0 1 0 1 0 1 a

+ 0 1 1 1 1 1 o0 1 b

1 0 1 0 1 0 0 1 0

Remark: Grade-school addition algorithm is optimal.

10/22/2019

12

Lists and Iterators

25

Integer Multiplication

o Multiplication. Given two n-bit integers a and b, compute a x b.
o Grade-school. ©(»?) bit operations.

11010101
x 01111101
11010101
00000O0OO0O0OO
110101010
110101010
o Q. Is grade-school multiplication 110101010
algorithm optimal? troro0io010
110101010
00000O0OO0OO
0110100000000001

26

Divide-and-Conquer Multiplication:
Warmup

I'a To multiply two »-bit integers « and b:

= Multiply four Van-bit integers, recursively.
= Add and shift to obtain result.

= 2"%.q + a,
b = 2"%.b + b,
ab = (2"%-a,+a,)Q"7 b +by)= 2" aby + 2" (aby+agh) + aghy

a EX. a = 10001101 b = 11100001
—— ——
a; a b, by

10/22/2019

13

Lists and Iterators 10/22/2019

_al T(")={4T31/2)+ 2 :fth:w(:se Ty = g”zk - "[ZI;Ig_nl_lj = wen
T(n) n
m =y dn NNy
T (n/2) T (n/2) T (n/2) T (n/2) 4(n/2)
/\ /\
T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) T(n/4) 16(n/4)

il ol

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2) 4 len (1)
27
Karatsuba Multiplication
H—
o To multiply two r-bit integers a and b:
= Add two "an bit integers.
= Multiply three an-bit integers, recursively.
= Add, subtract, and shift to obtain result.
a = 2"%.a + a,
b = 2"2.b + b,
ab = 2"-ab + 2" (a\by+ayhy) + agh,
= 2"-aby + 2" ((ay+a,) (b +by) — aiby —aghy) + aph,
O 2 E
28

14

Lists and Iterators

Karatsuba Multiplication

o To multiply two r-bit integers a and b:

= Add two 'an bit integers.
= Multiply three V2n-bit integers, recursively.
= Add, subtract, and shift to obtain result.

a = 2" + q
b = 2"%.b + b,
ab = 2"-ab + 2""? “(aby+agh) + agb,

2" + 2" ((ay+ay) (b +by) — aiby —aghy) + ayb,

@ @ @ & e

1) < T(lni2ly+ 7([ni2l)y + 7(14n2]) + @) = T = ow™) = o@*)
add. subtract, shift

-
recursive calls

Dot Product

Dot product. Given two length n vectors a and b, compute ¢ = a -b.

Grade-school. ©(n) arithmetic operations. AN
a-b= i ab,

i=1

a =[70 20 .10]
b =[30 .40 30]
a- b =(70x.30) + (20 x .40) + (.10 x .30) = .32

Remark. Grade-school dot product algorithm is optimal.

30

10/22/2019

15

Lists and Iterators

Matrix Multiplication

Matrix multiplication. Given two n-by-n matrices 4 and B, compute C = 4B.
Grade-school. ©(n%) arithmetic operations. —

n
¢ = Z Ay b;‘g’
k=l

Q. Is grade-school matrix multiplication algorithm optimal?

31

Block Matrix Multiplication

All AlZ Bll

C‘ll

B2l

C = A,xB, + A,xB, =

11

32

10/22/2019

16

Lists and Iterators

Matrix Multiplication: Warmup

To multiply two n-by-n matrices 4 and B:
. Divide: partition 4 and B into $n-by-3n blocks.
. Conquer: multiply 8 pairs of $n-by-3n matrices, recursively.
« Combine: add appropriate products using 4 matrix additions.

33

Fast Matrix Multiplication

Key idea. multiply 2-by-2 blocks with only 7 multiplications.

o« 7 multiplications.
. 18=8+ 10 additions and subtractions.

34

10/22/2019

17

Lists and Iterators

Fast Matrix Multiplication

To multiply two n-by-n matrices 4 and B: [Strassen 1969]
. Divide: partition 4 and B into $n-by-4n blocks.
. Compute: 14 3n-by-3n matrices via 10 matrix additions.
. Conquer: multiply 7 pairs of $n-by-3n matrices, recursively.
s Combine: 7 products into 4 terms using 8 matrix additions.

Analysis.
« Assume n is a power of 2.
o« T(n) = # arithmetic operations.

Itn)= 7T(n/2)_|_ Om®) = T(n)=0n"=")=0n>")
“ e

recursive calls add. subtract

35

Fast Matrix Multiplication

To multiply two n-by-n matrices 4 and B: [Strassen 1969]

I(n)= 7T(nl’2) OnY) = Tn)=0m"a"y=0n**")
_V] J

recursive calls add. subrract
Multiplications Additions Complexity
Traditional alg. n> n® — n? e(n®)
Recursive version n® nS —n? en?)
Strassen’s alg. nlos™ 6nloeT — Gn? O(n'esT)

Table 6.2 The number of arithmetic operations done by the three algorithms.

n Multiplications Additions

Traditional alg. 100 1,000,000 990. 000
Strassen’s alg. 100 411,822 2,470,334
Traditional alg. 1000 | 1,000,000,000 | 999,000,000
Strassen’s alg. 1000 264,280,285 | 1,579,681,709
Traditional alg. | 10,000 1012 9.99 x 1012
Strassen’s alg. | 10,000 0.169 = 1012 1012

Table 6.3 Comparison between Strassen’s algorithm and the traditional algorithm.

36

10/22/2019

18

Lists and Iterators

Fast Matrix Multiplication: Practice

Implementation issues.
« Sparsity.
o Caching effects.
» Numerical stability.
s Odd matrix dimensions.
» Crossover to classical algorithm around n =128.

Common misperception. “Strassen is only a theoretical curiosity.”

» Apple reports 8x speedup on G4 Velocity Engine when n = 2,500.
o« Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" Ax = b, determinant, eigenvalues, ...

37

Fast Matrix Multiplication: Theory

. Multiply two 2-by-2 matrices with 7 scalar multiplications?
Yes! [Strassen 1969] O =)= 0(n>*")

>0

. Multiply two 2-by-2 matrices with 6 scalar multiplications?
Impossible. [Hopcroft and Kerr 1971]

>0

@(}’l logy 6) — O(}’l 2.59)

Q. Two 3-by-3 matrices with 21 scalar multiplications?

A. Also impossible. @(nlug321) =0 2.77)
Begun, the decimal wars have. [Pan, Bini et al, Schanhage, ...]

» Two 20-by-20 matrices with 4,460 scalar multiplications. 0(n>*")

» Two 48-by-48 matrices with 47,217 scalar multiplications. O™
. A year later. 0™
o December, 1979. on 2,521813)
P JC(HUC[I"Y, 1980. o 2.521301)

38

10/22/2019

19

Lists and Iterators 10/22/2019

Fast Matrix Multiplication: Theory

w(T)

23]
wiT)

20

1968 1959 1975 1976 1977 978 1979 1980 198] 1982

FIG. 1. w(t) is the best exponent announced by time .

Best known. O(n?37%) [Coppersmith-Winograd, 1987]

Conjecture. O(n**¢) for any € > 0.

Caveat. Theoretical improvements to Strassen are progressively
less practical.

39

Possible Quiz Quetion

Given a mxm matrix M and a positive integer n, how to
compute Mn efficiently?

20

