
Lists and Iterators 10/22/2019

1

1

Divide-and-Conquer

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

2

Divide-and-Conquer
 Divide-and conquer is a

general algorithm design
paradigm:
 Divide: divide the input data S in

two or more disjoint subsets S1,
S2, …

 Conquer: solve the subproblems
recursively

 Combine: combine the solutions
for S1, S2, …, into a solution for S

 The base case for the
recursion are subproblems of
constant size

 Analysis can be done using
recurrence equations

Lists and Iterators 10/22/2019

2

Maxima Set Problem

 We can visualize various trade-offs for optimizing two-dimensional
data, such as points representing hotels according to their pool size
and restaurant quality, by plotting each as a two-dimensional point,
(x, y), where x is the pool size and y is the restaurant quality score.

 We say that such a point is a maximum point in a set if there is no
other point, (x′, y′), in that set such that x ≤ x′ and y ≤ y′.

 The maximum points are the best potential choices based on these
two dimensions and finding all of them is the maxima set problem.

We can efficiently find all
the maxima points
by divide-and-conquer.
Here the maxima set is {A,H,I,G,D}.

Solving the Maxima Set Problem
 A point (x, y) is a maximum point in S if there is no other

point, (x′, y′), in S such that x ≤ x′ and y ≤ y′.
 To find a maxima set for a set, S, of n points in the plane, we

may divide S into two equal parts.
 We compare two points in S using a lexicographic ordering of the

points in S, that is, where we order based primarily on x-
coordinates and then by y-coordinates if there are ties.

Lists and Iterators 10/22/2019

3

Divide-and-Conquer Solution
 Base case: If n ≤ 1, the maxima set is just S itself.
 Divide: let p = (xp, yp) be the median point in S according to the

lexicographic order. Then x = xp is a line dividing S into two halves.
 Conquer: we recursively solve the maxima-set problem for the set

of points on the left of this line and also for the points on the right.
 Combine:

 The maxima set of points on the right are also maxima points for
S.

 …

5

Example for the Combine Step

6

Lists and Iterators 10/22/2019

4

Divide-and-Conquer Solution
 Base case: If n ≤ 1, the maxima set is just S itself.
 Divide: let p = (xp, yp) be the median point in S according to the

lexicographic order. Then x = xp is a line dividing S into two halves.
 Conquer: we recursively solve the maxima-set problem for the set

of points on the left of this line and also for the points on the right.
 Combine:

 The maxima set of points on the right are also maxima points for
S.

 But some of the maxima points for the left set might be
dominated by a point from the right, namely the point, q, that is
leftmost.

 So then we do a scan of the left set of maxima, removing any
points that are dominated by q.

 The union of remaining set of maxima from the left and the
maxima set from the right is the set of maxima for S.

7

Pseudo-code

8

Lists and Iterators 10/22/2019

5

A Little Implementation Detail
 There is the issue of how to efficiently find the point, p, that is the

median point in a lexicographical ordering of the points in S
according to their (x, y)-coordinates.

 There are two immediate possibilities:
 One choice is to use a linear-time median-finding algorithm,

such as that given in Section 9.2. O(n) for each recursive call.
 Another choice is to sort the points in S lexicographically by

their (x, y)-coordinates as a preprocessing step, prior to calling
the MaxmaSet algorithm on S. O(n log(n)) for preprocessing
and O(1) for each recursive call, to find the middle of the list.

9

Analysis
 In either case, the rest of the non-recursive steps can

be performed in O(n) time, so this implies that,
ignoring floor and ceiling functions, the running time
for the divide-and-conquer maxima-set algorithm can
be specified as follows (where b is a constant):

 Thus, according to the merge sort example, this
algorithm runs in O(n log n) time.

10









2if)2/(2

2if
)(

nbnnT

nb
nT

Lists and Iterators 10/22/2019

6

11

Iterative Substitution
 In the iterative substitution, or “plug-and-chug,” technique, we

iteratively apply the recurrence equation to itself and see if we can
find a pattern:

 Note that base, T(n)=b, case occurs when 2i=n. That is, i = log n.
 So,

 Thus, T(n) is O(n log n).

ibnnT

bnnT

bnnT

bnnT

bnnbnT

bnnTnT

ii 












)2/(2

...

4)2/(2

3)2/(2

2)2/(2

))2/())2/(2(2

)2/(2)(

44

33

22

2

nbnbnnT log)(

12

The Recursion Tree
 Draw the recursion tree for the recurrence relation and look for a

pattern:

depth T’s size

0 1 n

1 2 n/2

i 2i n/2i

… … …









2if)2/(2

2if
)(

nbnnT

nb
nT

time

bn

bn

bn

…

Total time = bn + bn log n
(last level plus all previous levels)

Lists and Iterators 10/22/2019

7

13

Guess-and-Test Method
 In the guess-and-test method, we guess a closed form solution

and then try to prove it is true by induction:

 Guess: T(n) ≤ cn log n.

 We can conclude that T(n) ≤ cn log n if c ≥ b.

nbcncn

bncnncn

bnncn

bnnnc

bnnTnT

)(log

log

)2log(log

))2/log()2/((2

)2/(2)(

















2if)2/(2

2if
)(

nbnnT

nb
nT

14

Guess-and-Test Method
 In the guess-and-test method, we guess a closed form solution

and then try to prove it is true by induction:

 Guess: T(n) ≤ cn log n.

 Wrong: we cannot make this last line be less than cn log n

nbncnncn

nbnncn

nbnnnc

nbnnTnT

loglog

log)2log(log

log))2/log()2/((2

log)2/(2)(















2iflog)2/(2

2if
)(

nnbnnT

nb
nT

Lists and Iterators 10/22/2019

8

15

Guess-and-Test Method, (cont.)
 Recall the recurrence equation:

 Guess #2: T(n) ≤ cn log2 n.

if c ≥ b.

 So, T(n) is O(n log2 n).
 In general, to use this method, you need to have a good guess

and you need to be good at induction proofs.

ncn

nbncnncnncn

nbnncn

nbnnnc

nbnnTnT

2

2

2

2

log

loglog2log

log)2log(log

log))2/(log)2/((2

log)2/(2)(



















2iflog)2/(2

2if
)(

nnbnnT

nb
nT

16

Master Method
 Many divide-and-conquer recurrence equations have

the form:

 The Master Theorem:









dnnfbnaT

dnc
nT

if)()/(

if
)(

.1 somefor)()/(provided

)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if 1.

log

1loglog

loglog




















nfbnaf

nfnTnnf

nnnTnnnf

nnTnOnf

a

kaka

aa

b

bb

bb

Lists and Iterators 10/22/2019

9

17

Master Method, Example 1
 The form:

 The Master Theorem:

 Example:









dnnfbnaT

dnc
nT

if)()/(

if
)(

.1 somefor)()/(provided

)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if 1.

log

1loglog

loglog




















nfbnaf

nfnTnnf

nnnTnnnf

nnTnOnf

a

kaka

aa

b

bb

bb

nnTnT )2/(4)(

Solution: logba=2, so case 1 says T(n) is O(n2).

18

Master Method, Example 2
 The form:

 The Master Theorem:

 Example:









dnnfbnaT

dnc
nT

if)()/(

if
)(

.1 somefor)()/(provided

)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if 1.

log

1loglog

loglog




















nfbnaf

nfnTnnf

nnnTnnnf

nnTnOnf

a

kaka

aa

b

bb

bb

nnnTnT log)2/(2)(
Solution: logba=1, so case 2 says T(n) is O(n log2 n).

Lists and Iterators 10/22/2019

10

19

Master Method, Example 3
 The form:

 The Master Theorem:

 Example:









dnnfbnaT

dnc
nT

if)()/(

if
)(

.1 somefor)()/(provided

)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if 1.

log

1loglog

loglog




















nfbnaf

nfnTnnf

nnnTnnnf

nnTnOnf

a

kaka

aa

b

bb

bb

nnnTnT log)3/()(
Solution: logba=0, so case 3 says T(n) is O(n log n).

20

Master Method, Example 4
 The form:

 The Master Theorem:

 Example:









dnnfbnaT

dnc
nT

if)()/(

if
)(

.1 somefor)()/(provided

)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if 1.

log

1loglog

loglog




















nfbnaf

nfnTnnf

nnnTnnnf

nnTnOnf

a

kaka

aa

b

bb

bb

3)3/(9)(nnTnT 
Solution: logba=2, so case 3 says T(n) is O(n3).

Lists and Iterators 10/22/2019

11

21

Master Method, Example 5
 The form:

 The Master Theorem:

 Example:









dnnfbnaT

dnc
nT

if)()/(

if
)(

.1 somefor)()/(provided

)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if 1.

log

1loglog

loglog




















nfbnaf

nfnTnnf

nnnTnnnf

nnTnOnf

a

kaka

aa

b

bb

bb

1)2/()( nTnT

Solution: logba=0, so case 2 says T(n) is O(log n).

(binary search)

22

Possible Quiz Questions

nnTnT log)2/(2)(

Using Master Theorem, find solutions for the
following recurrence relations:

2)2/(8)(nnTnT 

Lists and Iterators 10/22/2019

12

Possible Quiz Question
 Please design an efficient algorithm (as fast as

you can) which will merge n sorted lists of the
same length m, into a single sorted list. You
may use available function merge(A, B), which
returns a sorted list consisting of elements
from two sorted lists A and B, with cost O(|A|
+ |B|), where |X| is the length of X, i.e., the
number of elements in X. Please analyze the
complexity of your algorithm in terms of n and
m.

23

 Addition. Given two n-bit integers a and b, compute a
+ b.

 Grade-school. (n) bit operations.

Remark: Grade-school addition algorithm is optimal.

Integer Addition

1

011 1

110 1+

010 1

111

010 1

011 1

100 0

10111 carry
a
b

Lists and Iterators 10/22/2019

13

25

Integer Multiplication
 Multiplication. Given two n-bit integers a and b, compute a  b.
 Grade-school. (n2) bit operations.

 Q. Is grade-school multiplication

algorithm optimal?

1

1

1

0

0

0

1

1

1

0

1

0

1

1

1

0

1

0

1

1

1

1

0

1

00000000

01010101

01010101

01010101

01010101

01010101

00000000

100000000001011

0

1

1

1

1

1

0

0



26

 To multiply two n-bit integers a and b:
 Multiply four ½n-bit integers, recursively.
 Add and shift to obtain result.

 Ex.

Divide-and-Conquer Multiplication:
Warmup

a  2n / 2  a1  a0

b  2n /2 b1  b0

a b  2n /2  a1  a0  2n /2 b1  b0   2n  a1b1  2n /2  a1b0  a0b1   a0b0

a = 10001101 b = 11100001

a1 a0 b1 b0

Lists and Iterators 10/22/2019

14

27

Recursion TreeT (n) 
0 if n  0

4T (n /2)  n otherwise





n

4(n/2)

16(n/4)

4k (n / 2k)

4 lg n (1)

T(n)

T(n/2)

T(n/4) T(n/4)

T(2) T(2) T(2) T(2) T(2) T(2) T(2) T(2)

T(n / 2k)

T(n/4)

T(n/2)

T(n/4) T(n/4)

T(n/2)

T(n/4) T(n/4)T(n/4)

...
.
.
.

T (n)  n 2k

k0

lg n

  n
21 lg n 1

21









  2n2 n

T(n/2)

...

.
.
.

.
.
.

.
.
.

28

 To multiply two n-bit integers a and b:
 Add two ½n bit integers.
 Multiply three ½n-bit integers, recursively.
 Add, subtract, and shift to obtain result.

Karatsuba Multiplication

a  2n / 2  a1  a0

b  2n / 2 b1  b0

ab  2n a1b1  2n / 2  a1b0  a0b1   a0b0

 2n a1b1  2n / 2  (a1  a0) (b1 b0)  a1b1  a0b0   a0b0

1 2 1 33

Lists and Iterators 10/22/2019

15

 To multiply two n-bit integers a and b:
 Add two ½n bit integers.
 Multiply three ½n-bit integers, recursively.
 Add, subtract, and shift to obtain result.

Karatsuba Multiplication

a  2n / 2  a1  a0

b  2n / 2 b1  b0

ab  2n  a1b1  2n /2  a1b0  a0b1   a0b0

 2n  a1b1  2n /2  (a1  a0) (b1 b0)  a1b1  a0b0   a0b0

1 2 1 33

30

Dot product. Given two length n vectors a and b, compute c = a  b.
Grade-school. (n) arithmetic operations.

Remark. Grade-school dot product algorithm is optimal.

Dot Product

a  b  ai bi
i1

n



a  .70 .20 .10 
b  .30 .40 .30 
a  b  (.70  .30)  (.20  .40)  (.10  .30)  .32

Lists and Iterators 10/22/2019

16

31

Matrix multiplication. Given two n-by-n matrices A and B, compute C = AB.
Grade-school. (n3) arithmetic operations.

Q. Is grade-school matrix multiplication algorithm optimal?

Matrix Multiplication

cij  aik bkj
k1

n





c11 c12  c1n

c21 c22  c2n

   

cn1 cn2  cnn





















a11 a12  a1n

a21 a22  a2n

   

an1 an2  ann





















b11 b12  b1n

b21 b22  b2n

   

bn1 bn2  bnn



















.59 .32 .41

.31 .36 .25

.45 .31 .42


















.70 .20 .10

.30 .60 .10

.50 .10 .40
















 

.80 .30 .50

.10 .40 .10

.10 .30 .40

















32

Block Matrix Multiplication

C
11

  A11 B11  A12 B21 
0 1

4 5









 

16 17

20 21









 

2 3

6 7









 

24 25

28 29









 

152 158

504 526











152 158 164 170

504 526 548 570

856 894 932 970

1208 1262 1316 1370



















 

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15



















 

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31



















C11
A11 A12 B11

B21

Lists and Iterators 10/22/2019

17

33

Matrix Multiplication: Warmup

To multiply two n-by-n matrices A and B:
 Divide: partition A and B into ½n-by-½n blocks.
 Conquer: multiply 8 pairs of ½n-by-½n matrices, recursively.
 Combine: add appropriate products using 4 matrix additions.

C11  A11  B11   A12  B21 
C12  A11  B12   A12  B22 
C21  A21  B11   A22  B21 
C22  A21  B12   A22  B22 

C11 C12

C21 C22









 

A11 A12

A21 A22









 

B11 B12

B21 B22











34

Fast Matrix Multiplication

Key idea. multiply 2-by-2 blocks with only 7 multiplications.

 7 multiplications.
 18 = 8 + 10 additions and subtractions.

P1  A11  (B12  B22)

P2  (A11  A12) B22

P3  (A21  A22)  B11

P4  A22  (B21  B11)

P5  (A11  A22)  (B11  B22)

P6  (A12  A22)  (B21  B22)

P7  (A11  A21)  (B11  B12)

C11  P5  P4  P2  P6

C12  P1 P2

C21  P3  P4

C22  P5  P1 P3  P7

C11 C12

C21 C22









 

A11 A12

A21 A22









 

B11 B12

B21 B22











Lists and Iterators 10/22/2019

18

35

Fast Matrix Multiplication

To multiply two n-by-n matrices A and B: [Strassen 1969]
 Divide: partition A and B into ½n-by-½n blocks.
 Compute: 14 ½n-by-½n matrices via 10 matrix additions.
 Conquer: multiply 7 pairs of ½n-by-½n matrices, recursively.
 Combine: 7 products into 4 terms using 8 matrix additions.

Analysis.
 Assume n is a power of 2.
 T(n) = # arithmetic operations.

36

Fast Matrix Multiplication
To multiply two n-by-n matrices A and B: [Strassen 1969]

Lists and Iterators 10/22/2019

19

37

Fast Matrix Multiplication: Practice

Implementation issues.
 Sparsity.
 Caching effects.
 Numerical stability.
 Odd matrix dimensions.
 Crossover to classical algorithm around n = 128.

Common misperception. “Strassen is only a theoretical curiosity.”

 Apple reports 8x speedup on G4 Velocity Engine when n  2,500.
 Range of instances where it's useful is a subject of controversy.

Remark. Can "Strassenize" Ax = b, determinant, eigenvalues, ….

38

Begun, the decimal wars have. [Pan, Bini et al, Schönhage, …]

Fast Matrix Multiplication: Theory

Q. Multiply two 2-by-2 matrices with 7 scalar multiplications?

 (n log3 21) O(n 2.77)

O(n 2.7801)

 (n log2 6)  O(n 2.59)

(n log2 7) O(n 2.807)A. Yes! [Strassen 1969]

Q. Multiply two 2-by-2 matrices with 6 scalar multiplications?
A. Impossible. [Hopcroft and Kerr 1971]

Q. Two 3-by-3 matrices with 21 scalar multiplications?
A. Also impossible.

 Two 48-by-48 matrices with 47,217 scalar multiplications.

 December, 1979. O(n 2.521813)

O(n 2.521801) January, 1980.

 A year later. O(n 2.7799)

 Two 20-by-20 matrices with 4,460 scalar multiplications. O(n 2.805)

Lists and Iterators 10/22/2019

20

39

Fast Matrix Multiplication: Theory

Best known. O(n2.376) [Coppersmith-Winograd, 1987]

Conjecture. O(n2+) for any  > 0.

Caveat. Theoretical improvements to Strassen are progressively
less practical.

Possible Quiz Quetion

Given a mxm matrix M and a positive integer n, how to
compute Mn efficiently?

40

