
Lists and Iterators 10/17/2019

1

1

The Greedy Method

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Optimization Problems
 An optimization problem can be abstracted as (V, D,

C, F), where V is a set of variables, D is the domain
for variables, C is a set of constraints over V, and f is a
numeric function over V. The goal is to find an
assignment of :VD such that all C are satisfied and
f generates the minimum (or maximum) value under
the assignment.

 Example:
Find the minimum value of f(x) = -x2+x.
V = {x}, D = R, C = true, F = f.

2

1

2

Lists and Iterators 10/17/2019

2

3

The Greedy Method
 Using an easy-to-compute order to make a sequence of

choices, each of the choice is best from all of those that
are currently possible (local optimal).

Knapsack Problem

 Example: Given a set of 5 items with value and weight.
How to select a subset of items whose total weight is
under 11, but the total value is maximal.

 Optimal Solution:
 { 3, 4 } has weight 11 and value 40.

 Greedy choice: Choose item with maximum vi / wi.
 Greedy Solution:

 { 5, 2, 1 } has weight 10 and value 35  greedy not optimal.

1

value

18

22

28

1

weight

5

6

6 2

7

#

1

3

4

5

2

W = 11

3

4

Lists and Iterators 10/17/2019

3

Knapsack Problem (general description)

 Given n items of weights s1, s2, …, sn, and values
v1, v2, …, vn and weight C, the knapsack capacity,
the objective is to find integers x1, x2, …, xn in { 0,
1 } that maximize the sum




n

i
iivx

1





n

i
ii Csx

1

subject to the constraint

1

value

18

22

28

1

weight

5

6

6 2

7

#

1

3

4

5

2

e.g. (x1, x2, x3, x4, x5) = (0, 0, 1, 1, 0)

Fractional Knapsack Problem
 Given n items of weights s1, s2, …, sn, and values

v1, v2, …, vn and weight C, the knapsack capacity,
the objective is to find nonnegative real numbers
x1, x2, …, xn between 0 and 1 that maximize the
sum




n

i
iivx

1





n

i
ii Csx

1

subject to the constraint This problem can
be solved by
linear
programming.

5

6

Lists and Iterators 10/17/2019

4

7

Fractional Knapsack Example
 Given: A set S of n items, with each item i having

 bi - value
 wi - weight

 Goal: Choose items with maximum total value but with
weight at most W.

Weight:
Value:

A B C D E

4 ml 8 ml 2 ml 6 ml 1 ml
$12 $32 $40 $30 $50

Items:

Unit value: 3
($ per ml)

4 20 5 50
10 ml

Solution:
• 100% of E (1 ml)
• 100% of C (2 ml)
• 100% of D (6 ml)
• 12.5% of B (1 ml)

“knapsack”

Fractional Knapsack Problem
 This problem can easily be solved using the

following greedy strategy:
 For each item compute vi = bi /wi, the ratio of its

value to its weight.
 Sort the items by decreasing ratio, and fill the

knapsack with as much as possible from the first
item, then the second, and so forth.

 This problem reveals many of the characteristics
of a greedy algorithm: The algorithm consists of a
simple iterative procedure that selects an item
which produces the largest immediate gain while
maintaining feasibility (i.e., no violation of
constraints).

7

8

Lists and Iterators 10/17/2019

5

Fractional Knapsack Algorithm
 Greedy choice: Choose item

with highest value (per unit
weight)
 Run time: O(n log n). Why?

 Correctness: Suppose there is a
better solution than the greedy one.
 Then there must be an item i

with higher value than a chosen
item j, vi>vj but xi<wi and xj>0.

 so that we substitute some i with
j, we get a better solution.

 However, the algorithm will
assign xi + min{ wi-xi, xj } to xi,
not the current xi.

 Thus, there is no better solution
than the greedy one.

Algorithm fractionalKnapsack(S, W)
Input: set S of items w/ values bi

and weight wi; max. weight W
Output: amount xi of each item i

to maximize value w/ weight
at most W
for each item i in S

xi  0
vi  bi / wi {value}

w  0 {total weight}

while w < W && |S|> 0
remove item i with highest vi

xi  min{wi , W - w}
w  w + min{wi , W - w}

return (x1 , x2 , … , xn)

10

Task Scheduling
 Given: a set T of n tasks, start time, si and finish time, fi

(where si < fi)
 Goal: Perform a maximum number of compatible jobs

on a single machine.

Time0 1 2 3 4 5 6 7 8 9 10 11

f
g

h

e

a
b

c
d

9

10

Lists and Iterators 10/17/2019

6

11

Task Scheduling: Greedy Algorithms
 Greedy template. Consider jobs in some order.

Repeatedly take each job in the order, provided it's
compatible with the ones already taken.

 [Earliest start time] Consider jobs in ascending order of sj.

 [Earliest finish time] Consider jobs in ascending order of fj.

 [Shortest interval] Consider jobs in ascending order of fj - sj.

 [Fewest conflicts] For each job j, count the number of
conflicting jobs cj. Schedule in ascending order of cj.

12

Task Scheduling: Greedy Algorithms
 Greedy template. Consider jobs in some natural

order. Take each job provided it's compatible with the
ones already taken.

counterexample for earliest start time

counterexample for shortest interval

counterexample for fewest conflicts

11

12

Lists and Iterators 10/17/2019

7

13

 Greedy algorithm. Consider jobs in increasing order of finish
time. Take each job in the order, provided it's compatible with
the ones already taken.

 Implementation: O(n log n).
 Let job j* denote the job that was added last to A.
 Job j is compatible with A if sj  fj*, i.e., j starts after j* finished.

Sort jobs by finish times so that f1  f2  ...  fn.

A  
for j = 1 to n {

if (job j compatible with A)
A  A  {j}

}
return A

set of jobs selected

Task Scheduling: Greedy Algorithm

14

Task Scheduling: Analysis
 Theorem. The greedy algorithm is optimal.

 Proof. (by contradiction)
 Assume greedy is not optimal, and let's see what happens.
 Let i1, i2, ... ik denote set of jobs selected by greedy.
 Let j1, j2, ... jm denote set of jobs in the optimal solution with

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

j1 j2 jr

i1 i2 ir ir+1

. . .

Greedy:

OPT: jr+1
why not replace job jr+1
with job ir+1?

job ir+1 finishes before jr+1

. . .

13

14

Lists and Iterators 10/17/2019

8

15

Task Scheduling: Analysis
 Theorem. The greedy algorithm is optimal.

 Proof. (by contradiction)
 Assume greedy is not optimal, and let's see what happens.
 Let i1, i2, ... ik denote set of jobs selected by greedy.
 Let j1, j2, ... jm denote set of jobs in the optimal solution with

i1 = j1, i2 = j2, ..., ir = jr for the largest possible value of r.

j1 j2 jr

i1 i2 ir ir+1

. . .

Greedy:

OPT’:
solution still feasible and
optimal, but contradicts
maximality of r.

job ir+1 finishes before jr+1

ir+1

. . .

How to Show a Greedy Method is Optimal?

 In general, a greedy method is simple to describe, efficient to
run, but difficult to prove.

 To show a greedy method is not optimal, we need to find a
counterexample.

 To show a greedy method is indeed optimal, we use the
following proof strategy:

 Suppose S is the solution found by the greedy method and Opt is
an optimal solution that differs from S minimally. If S = Opt, we
are done. If not, we “modify” Opt to obtain another optimal
solution Opt’, such that Opt’ has less difference than Opt
comparing to S. That’s a contradiction to the assumption that
Opt differs from S minimally.

16

15

16

Lists and Iterators 10/17/2019

9

17

Data Compression
 Given a string X, efficiently encode X into a

smaller string Y
 Saves memory and/or bandwidth

 A good approach: Huffman encoding
 Compute frequency f(c) for each character c.
 Encode high-frequency characters with short code

words
 No code word is a prefix for another code
 Use an optimal encoding tree to determine the

code words

Motivation

The motivations for data compression are obvious:

 reducing the space
required to store files
on disk or tape

 reducing the time
to transmit large files.

Huffman savings are between 20% - 90%
Image Source : plus.maths.org/issue23/ features/data/data.jpg

17

18

Lists and Iterators 10/17/2019

10

Basic Idea :
Let the set of characters in the file be C ={c1, c2, …, cn}.
Let also f (ci), 1 i n, be the frequency of character ci in
the file, i.e., the number of times ci appears in the file.
It uses a variable-length code table for encoding a
source symbol (such as a character in a file) where
the variable-length code table has been derived in
a particular way based on the frequency of
occurrence for each possible value of the source
symbol.

Example:
Suppose you have a file with 100K characters.

For simplicity assume that there are only 6 distinct
characters in the file from a through f, with frequencies as
indicated below.

We represent the file using a unique binary string for each
character.

a b c d e f

Frequency
(in 100s)

45 13 12 16 9 5

Fixed-length
code-word

000 001 010 011 100 101

Space = (45*3 + 13*3 + 12*3 + 16*3 + 9*3 + 5*3) * 1000

= 300K bits

19

20

Lists and Iterators 10/17/2019

11

Can we do better ??

By using variable-length codes instead of fixed-length
codes.

Idea : Giving frequent characters short code-words, and
infrequent characters long code-words.

i.e. The length of the encoded character is inversely
proportional to that character's frequency.

YES !!

a b c d e f

Frequency (in 1000s) 45 13 12 16 9 5

Fixed-length code-word 000 001 010 011 100 101

Variable-length code-word 0 101 100 111 1101 1100

Space = (45*1 + 13*3 + 12*3 + 16*3 + 9*4 + 5*4) * 1000

= 224K bits (Savings = 25%)

PREFIX CODES :

Codes in which no code-word is also a prefix of some
other code-word.
("prefix-free codes" would have been a more appropriate name)

Variable-length
code-word

0 101 100 111 1101 1100

It is very easy to encode and decode using prefix codes.

No Ambiguity !!

It is possible to show (although we won't do so here)
that the optimal data compression achievable by a
character code can always be achieved with a prefix
code, so there is no loss of generality in restricting
attention to prefix codes.

21

22

Lists and Iterators 10/17/2019

12

f a c e

Encoded as 1100 0 100 1101 = 110001001101

To decode, we have to decide where each code begins and ends,
since they are no longer all the same length. But this is easy,
since, no codes share a prefix. This means we need only scan the
input string from left to right, and as soon as we recognize a code,
we can print the corresponding character and start looking for the
next code.

In the above case, the only code that begins with “1100.." is “f",
so we can print “f" and start decoding “0100...", get “a", etc.

Benefits of using Prefix Codes:

Example:

a b c d e f

Variable-length
code-word

0 101 100 111 1101 1100

FACE = 11000100110

When we try to decode “1100"; we could not tell whether

1100 = “f"

or

1100 = 110 + 0 = “ea"

Benefits of using Prefix Codes:

Example:

To see why the no-common prefix property is essential, suppose that we
encoded “e" with the shorter code “110“

a b c d e f

Variable-length
code-word

0 101 100 111 1101 1100

Variable-length
code-word

0 101 100 111 110 1100

23

24

Lists and Iterators 10/17/2019

13

Representation:
The Huffman algorithm is represented as:

• binary tree

• each edge represents either 0 or 1

• 0 means "go to the left child"

• 1 means "go to the right child."

• each leaf corresponds to the sequence of 0s and 1s
traversed from the root to reach it, i.e. a particular
code.

Since no prefix is shared, all legal codes are at the leaves,
and decoding a string means following edges, according to
the sequence of 0s and 1s in the string, until a leaf is
reached.

100

142858

1486

a:45 b:13 e:9 f:5c:12 d:16

a b c d e f

Frequency
(in 1000s)

45 13 12 16 9 5

Fixed-length
code-word

000 001 010 011 100 101

a b c d e f

Frequency
(in 1000s)

45 13 12 16 9 5

Variable-
length

code-word

0 101 100 111 1101 1100

100

3025

14

55a:45

b:13

e:9f:5

c:12 d:16

Labeling :

leaf -> character it represents : frequency with which it appears in
the text.

internal node -> frequency with which all leaf nodes under it appear
in the text (i.e. the sum of their frequencies).

0 0

0

0

0

0 0

1

0

0

0

0
1

1

1

1

1

1
1

1
1

25

26

Lists and Iterators 10/17/2019

14

27

Encoding Tree Summary
 A code is a mapping of each character of an alphabet to a binary

code-word
 A prefix code is a binary code such that no code-word is the

prefix of another code-word
 An encoding tree represents a prefix code

 Each external node stores a character
 The code word of a character is given by the path from the root to

the external node storing the character (0 for a left child and 1 for a
right child)

a

b c

d e

00 010 011 10 11
a b c d e

An optimal code for a file is always represented by a proper binary tree, in
which every non-leaf node has two children.

The fixed-length code in our example is not optimal since its tree, is not a
full binary tree: there are code-words beginning 10 . . . , but none beginning
11 ..

Since we can now restrict our attention to full binary trees, we can say that if
C is the alphabet from which the characters are drawn, then the tree for an
optimal prefix code has exactly |C| leaves, one for each letter of the
alphabet, and exactly |C| - 1 internal nodes.

100

142858

1486

a:45 b:13 e:9 f:5c:12 d:16

100

3025

14

55a:45

b:13

e:9f:5

c:12 d:160 0

0

0

0

0 0

1

0

0

0

0
1

1

1

1

1

1
1

1
1

0ptimal Code

27

28

Lists and Iterators 10/17/2019

15

c in C

Given a tree T corresponding to a prefix code, it is a simple
matter to compute the number of bits required to encode a
file.

For each character c in the alphabet C,

• f(c) denote the frequency of c in the file

• dT(c) denote the depth of c's leaf in the tree.

(dT(c) is also the length of the code-word for character
c)

The number of bits required to encode a file is thus

B(T) = f(c) dT(c)

which we define as the cost of the tree.

Constructing a Huffman code

Huffman invented a greedy algorithm that constructs an
optimal prefix code called a Huffman code. The algorithm
builds the tree T corresponding to the optimal code in a
bottom-up manner.

It begins with a set of |C| leaves and performs a sequence of
|C| - 1 "merging" operations to create the final tree.

Greedy Choice?

The two smallest nodes are chosen at each step, and this local
decision results in a globally optimal encoding tree.

In general, greedy algorithms use local minimal/maximal choices
to produce a global minimum/maximum.

29

30

Lists and Iterators 10/17/2019

16

HUFFMAN(C)

1 n |C|

2 Q BUILD-MIN-HEAP(C) // using frequency f[c] for c in C

3 for i 1 to n - 1

4 do ALLOCATE-NODE(z) // create a new node z

5 left[z] x EXTRACT-MIN(Q)

6 right[z] y EXTRACT-MIN(Q)

7 f[z] f[x] + f[y] // frequency of z

8 INSERT(Q, z)

9 return EXTRACT-MIN(Q)

C is a set of n characters: each character c in C is an object with a
defined frequency f[c].

A min-priority queue Q, keyed on f, is used to identify the two least-
frequent objects to merge together and produce z. For Q, z is a new
character with frequency f[z] = f[x]+f[y]. For the tree, z is a new
internal node with children x and y.

The steps of Huffman's algorithm

a:45b:13e:9f:5 c:12 d:16

3025

14

a:45

b:13

e:9f:5

c:12 d:16

0

00 11

1

2514 a:45

b:13e:9f:5 c:12

d:16
00 11

14 a:45b:13

e:9f:5

c:12 d:16
0 1

55

3025

14

a:45

b:13

e:9f:5

c:12 d:16
00

0

0

11

1

1

100
55

3025

14

a:45

b:13

e:9f:5

c:12 d:16
00

0

0

11

1

1

10

31

32

Lists and Iterators 10/17/2019

17

HUFFMAN(C)

1 n |C|

2 Q BUILD-MIN-HEAP(C) // O(n)

3 for i 1 to n - 1 // n *

4 do ALLOCATE-NODE(z) // O(1)

5 left[z] x EXTRACT-MIN(Q) // O(log n)

6 right[z] y EXTRACT-MIN(Q) // O(log n)

7 f[z] f[x] + f[y] // frequency of z // O(1)

8 INSERT(Q, z) // O(log n)

9 return EXTRACT-MIN(Q) // O(1)

C is a set of n characters: each character c in C is an object with a
defined frequency f[c].

A min-priority queue Q, keyed on f, is used to identify the two least-
frequent objects to merge together and produce z. For Q, z is a new
character with frequency f[z] = f[x]+f[y]. For the tree, z is a new
internal node with children x and y.

Running Time Analysis
Assumes that Q is implemented as a binary min-heap.

• For a set C of n characters, the initialization of Q in
line 2 can be performed in O(n) time using the
BUILD-MIN-HEAP procedure.

• The for loop in lines 3-8 is executed exactly n - 1
times. Each heap operation requires time O(log n).
The loop contributes = (n - 1) * O(log n)
= O(nlog n)

Thus, the total running time of HUFFMAN on a set of n
characters = O(n) + O(nlog n)

= O(n log n)

33

34

Lists and Iterators 10/17/2019

18

35

Huffman Code Example

a b c d r
5 2 1 1 2

X = abracadabra
Frequencies

ca rdb
5 2 1 1 2

ca rdb

2

5 2 2
ca bd r

2

5

4

ca bd r

2

5

4

6

c

a

bd r

2 4

6

11

36

Huffman Code Example

35

36

Lists and Iterators 10/17/2019

19

Possible Quiz Question:
Suppose you have a file with 100K characters.

For simplicity assume that there are only 8 distinct
characters in the file from a through h, with frequencies as
indicated below.

We represent the file using a unique binary string for each
character.

a b c d e f g h

Frequency
(in 100s)

35 13 12 16 9 5 5 5

Code-
word

Question: What is the prefix code for this set
of characters which produces the shortest
binary string for this file?

Possible Quiz Question:

Given two sorted lists A and B, merge(A, B) will return a
new list consisting of elements from A and B with cost
O(|A| + |B|), where |X| is the length of X, i.e., the
number of elements in list X.

Please design an efficient algorithm (as fast as you can)
which merge n sorted lists into a single list by calling
merge(A, B), where the sizes of these n lists S ={L1, L2,
…, Ln}, are as follows: for 1  i < n, |Li| = 2i, and |Ln| =
2. Thus, the total number of elements in these n lists is
2n. Please analyze the complexity of your algorithm in
terms of n.

37

38

Lists and Iterators 10/17/2019

20

Correctness of Huffman's algorithm

To prove that the greedy algorithm HUFFMAN is correct, we
show that the problem of determining an optimal prefix
code exhibits the greedy-choice and optimal-substructure
properties.

The Greedy-Choice Property

Lemma 1: Let C be an alphabet in which each character c in
C has frequency f[c]. Let x and y be two characters in C
having the lowest frequencies. Then there exists an optimal
prefix code for C in which the code words for x and y have the
same length and differ only in the last bit.

Proof Idea of Lemma 1:
The idea of the proof is to take the tree T representing an arbitrary
optimal prefix code and modify it to make a tree representing another
optimal prefix code such that the characters x and y appear as sibling
leaves of maximum depth in the new tree. If we can do this, then their
code words will have the same length and differ only in the last bit.

Why ?

Must be on the bottom (least frequent)

Full tree, so arrange them as siblings, and so differ in the last bit.

39

40

Lists and Iterators 10/17/2019

21

Proof of Lemma 1

ba
y x

Let a and b be two characters that are are sibling leaves of maximum
depth in T, and x and y are the two characters of the minimum
frequency. Without loss in generality, assume that f[x] < f[y] < f[a]
< f[b]. Then we must have dT(x) = dT(y) = dT(a) = dT(b).

T

The difference in cost between T and T’ is
B(T) – B(T’) = f(c) dT(c) - f(c) dT’(c)

= f[x] dT(x) + f[a] dT(a) - f[x] dT’(x) - f[a] dT’(a)

= f[x] dT(x) + f[a] dT(a) - f[x] dT(a) - f[a] dT(x)

On the other hand, B(T) – B(T’) ≤ 0, because B(T) is minimal.

So B(T) – B(T’) = 0 and dT(a) = dT(x).

Proof: Exchange the positions of a and x in T, to produce T’.

bx
y a

T’

= (f[a] - f[x])(dT(a) - dT(x)) ≥ 0 // f[x] is min and dT(a) is max

ba

y

x

Similarly exchanging the positions of b and y in T’, to produce
T’’ does not increase the cost,

bx

y

a

T T’

yx

b

a

T’’

B(T’) – B(T’’) is 0.

Since T is optimal, so is T’ and T”.

Thus, T’’ is an optimal tree in which x & y appear as
sibling leaves of maximum depth from which
Lemma 1 follows.

41

42

Lists and Iterators 10/17/2019

22

Lemma 2: Let C be a given alphabet with frequency f[c]
defined for each character c C . Let x and y be two
characters in C with minimum frequency. Let C’ be the
alphabet C with characters x,y removed and (new)
character z added, so that C’ = C – {x,y} U {z}; define f
for C’ as for C, except that f[z] = f[x] + f[y]. Let T’ be any
tree representing an optimal prefix code for the alphabet
C’. Then the tree T, obtained from T’ by replacing the leaf
node for z with an internal node having x and y as children,
represents an optimal prefix code for the alphabet C.

Proof:

We first express B(T) in terms of B (T')

 c C – {x,y} we have dT(c) = dT’(c), and hence

f[c]dT(c) = f[c]dT’ (c)’





Claim: If T’ is optimal, so is T.
T’

z

x y

T

z

f[z] = f[x] + f[y]

B(T) = B(T’) + (f[x] + f[y])

43

44

Lists and Iterators 10/17/2019

23

Since dT(x) = dT(y) = dT’(z) + 1, we have

f[x]dT(x) + f[y]dT(y) = (f[x] + f[y]) (dT'(z) + 1) = f(z)dT'(z) + (f[x] + f[y])

Or f[x]dT(x) + f[y]dT(y) - f(z)dT'(z) = (f[x] + f[y])

From which we conclude that

B(T) = B(T’) + (f[x] + f[y]) or B(T’) = B(T) - (f[x] - f[y])

Proof of Claim by contradiction

Suppose that T does not represent an optimal prefix code for C.
Then there exists a tree Opt such that B(Opt) < B(T).

Without loss in generality (by Lemma 1) Opt has x & y as siblings. Let T’’
be the tree Opt with the common parent of x & y replaced by a leaf z with
frequency f[z] = f[x] + f[y].

Then, B(T’’) = B(Opt) - (f[x] – f[y])

< B(T) - (f[x] - f[y]) (assume B(Opt) < B(T))

= B(T’)

Yielding a contradiction to the assumption that T’ represents an optimal
prefix code for C’. Thus, T must represent an optimal prefix code for the
alphabet C.

Theorem: Huffman Code is optimal for n characters.

Proof: Induction on n.

Base case: n = 2 and one character is 0 and the other is 1. Optimal.

Inductive hypothesis: Huffman Code is optimal for n – 1 characters.

Induction case: We have n characters in C. Let x & y be the least
frequent characters in C. We replace x & y by z with f(z) = f(x) + f(y)
to obtain
C’ = C – { x, y } U {z}. By induction hypothesis, we have optimal
code for C’. Let code(z) = c. Then let code of x be c0 and code of y be
c1. By Lemma 2, the resulting code is optional for C.

45

46

Lists and Iterators 10/17/2019

24

Drawbacks

The main disadvantage of Huffman’s method is that it
makes two passes over the data:

• one pass to collect frequency counts of the letters in
the message, followed by the construction of a
Huffman tree and transmission of the tree to the
receiver; and

• a second pass to encode and transmit the letters
themselves, based on the static tree structure.

This causes delay when used for network communication,
and in file compression applications the extra disk
accesses can slow down the algorithm.

We need one-pass methods, in which letters are encoded “on the fly”.

48

Huffman Code Summary
 Given a string X, Huffman’s algorithm construct a

prefix code that minimizes the weight of the encoding
of X

 It runs in time O(m n log n), where m is the length
of X and n is the number of distinct characters of X

 A heap-based priority queue is used as an auxiliary
structure

47

48

Lists and Iterators 10/17/2019

25

49

The Greedy Method
 The greedy method is a general algorithm

design paradigm for optimization problems, built
on the following elements:
 configurations: different choices, collections, or

values to find
 objective function: a score assigned to

configurations, which we want to either maximize or
minimize

 It works best when applied to problems with the
greedy-choice property:
 a globally-optimal solution can always be found by a

series of local improvements from a starting
configuration.

49

