Equivalence Relation

Relation \(R \) on \(S \) is a subset of \(S \times S \).

- For every pair of elements \(a, b \) from a set \(S \),
 \(a R b \) is either true or false.
- \(a R b \) is true iff \((a, b)\) is in \(R \). In this case, we say \(a \) is related to \(b \).

An equivalence relation satisfies:

1. (Reflexive) \(a Ra \)
2. (Symmetric) \(a R b \) iff \(b Ra \)
3. (Transitive) \(a R b \) and \(b Rc \) implies \(a Rc \)
Equivalence Classes

- Given a set of things...
 - \{ grapes, blackberries, plums, apples, oranges, peaches, raspberries, lemons, bananas \}

- ...define the equivalence relation
 - All citrus fruit is related, all berries, all stone fruits, ...

- ...partition them into related subsets
 - \{ grapes \}, \{ blackberries, raspberries \}, \{ oranges, lemons \}, \{ plums, peaches \}, \{ apples \}, \{ bananas \}

Everything belongs to a unique class.
Everything in an equivalence class is related to each other.

Determining equivalence classes

- Idea: give every equivalence class a name
 - \{ oranges, limes, lemons \} = "like-ORANGES"
 - \{ peaches, plums \} = "like-PEACHES"
 - Etc.

- To answer if two fruits are related:
 - FIND the class name of one fruit.
 - FIND the class name of the other fruit.
 - Are they the same name?
Building Equivalence Classes

- Start with disjoint, singleton sets:
 - \{ apples \}, \{ bananas \}, \{ peaches \}, ...

- As you gain information about the equivalence relation, take UNION of sets that are now related:
 - \{ peaches, plums \}, \{ limes, oranges, lemons \}, \{ apples \},
 \{ bananas \}, ...

- E.g. if peaches \(R \) limes, then we get
 - \{ peaches, plums, limes, oranges, lemons \}

Disjoint Union - Find

- Maintain a set of pairwise disjoint sets.
 - \{3,5,7\}, \{4,2,8\}, \{9\}, \{1,6\}

- Each set has a unique name, using one of its members
 - \{3,5,7\}, \{4,2,8\}, \{9\}, \{1,6\}
Union

- Union(x, y) – take the union of two sets named x and y
 - \{3,5,7\}, \{4,2,8\}, \{9\}, \{1,6\}

 \[
 \text{Union}(5,1) \\
 \{3,5,7,1,6\}, \{4,2,8\}, \{9\},
 \]

Find

- Find(x) – return the name of the set containing x.
 - \{3,5,7,1,6\}, \{4,2,8\}, \{9\},
 - Find(1) = 5
 - Find(4) = 8
Example

S: {1, 2, 7, 8, 9, 13, 19}
 {3}
 {4}
 {5}
 {6}
 {10}
 {11, 17}
 {12}
 {14, 20, 26, 27}
 {15, 16, 21}
 ...
{22, 23, 24, 29, 39, 32}
{33, 34, 35, 36}

Find(8) = 7
Find(14) = 20
Union(7, 20) {10}

S: {1, 2, 7, 8, 9, 13, 19, 14, 20, 26, 27}
 {3}
 {4}
 {5}
 {6}
 {10}
 {11, 17}
 {12}
 {15, 16, 21}
 ...
{22, 23, 24, 29, 39, 32}
{33, 34, 35, 36}

Implementing Disjoint Sets

- n elements
 - Total Cost of: m finds, at most n - 1 unions
- Target complexity: total $\Theta(m + n)$ i.e. $\Theta(1)$ amortized per operation.
- $\Theta(1)$ worst-case for find as well as union would be great, but it’s simply not true.
- Known result: find and union can be done practically in $\Theta(1)$ time.
List-based Implementation

- Each set is stored in a sequence represented with a linked-list.
- Each node should store an object containing the element and a reference to the set name.

![Diagram showing list-based implementation of sets]

Analysis of List-based Representation

- Worst case time for find is $O(1)$.
- When doing a union, always move elements from the smaller set to the larger set:
 - Each time an element is moved it goes to a set of size at least double its old set.
 - Thus, an element can be moved at most $O(\log n)$ times.
- Total time needed to do $n - 1$ unions and m finds is $O(n \log n + m)$.
Implementing Disjoint Sets

- Observation: trees let us find many elements given one root...

- Idea: if we reverse the pointers (make them point up from child to parent), we can find a single root from many elements...

- Idea: Use one tree for each equivalence class. The name of the class is the tree root.

Up-Tree for Union/Find

Initial state

Intermediate state

Roots are the names of each set.
Find Operation

- Find(x) follow x to the root and return the root.
- Cost: O(h), h: height of the tree

\[\text{Find}(6) = 7\]

Union Operation

- Union(i,j) - assuming i and j roots, point i to j.
- Cost: O(1)

\[\text{Union}(1,7)\]
Simple Implementation

- Array of indices

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>-</td>
</tr>
</tbody>
</table>

Up[x] = “-” or “-1”, means x is a root.

Union

```c
void Union( int[] Up, int x, int y) {
    //precondition: x and y are roots
    Up[x] = y;
}
```
Constant Time!
FIND

Design Find operator
- Recursive version
- Iterative version

```
static int Find(int[] Up, int x) {
    // Pre: Up[0..(siz-1)] is the parent info;
    // x is in the range 0 to size-1
    if (Up[x] == "-1") return x;
    return Find(Up[x]);
}
```

Complexity: depth of x in the tree.

A Bad Case

```
Union(1,2)
Union(2,3)
:               :
Union(n-1,n)
```

Find(1) n steps!!
m finds: O(mn)
Now this doesn’t look good 😞

Can we do better? Yes!

1. Improve union so that find only takes $O(\log n)$
 - Union-by-size
 - Union-by-height (height)
 - The cost of m finds is $\Theta(m \log n)$

2. Improve find so that it becomes even better!
 - Path compression
 - Reduces complexity to almost $O(1)$ per operation

Union by size/height

- Union by size (weight)
 - Always point the smaller tree to the root of the larger tree
- Union by height (rank)
 - Always point the shorter tree to the root of the higher tree
Elegant Array Implementation

Union by size

void W_Union(int i, j){
 //Pre: i and j are roots//
 int wi = size[i];
 int wj = size[j];
 if (wi < wj) {
 Up[i] = j;
 size[j] = wi + wj;
 } else {
 Up[j] = i;
 size[i] = wi + wj;
 }
}

Computing time?
Union by height

```c
void R_Union(int i, j){
    //Pre: i and j are roots/
    int ri = height[i];
    int rj = height[j];
    if (ri < rj) {
        Up[i] = j;
    } else if (ri > rj) {
        Up[j] = i;
    } else { // ri == rj
        height[j]++; Up[j] = i;
    }
}
```

Computing time?

Example Again

```
1 2 3 ... n
Union(1,2)
2 3 ... n
Union(2,3)
1 2 3 ... n
Union(n-1,n)
```

Find(1) constant time
Analysis of Union by size/height

- **Theorem:** With union by size/height an up-tree of height h has size at least 2^h.
- **Proof by induction on height**
 - **Basis:** $h = 0$. The up-tree has one node, $2^0 = 1$
 - **Inductive step:** Assume true for all $h' < h$.

![Diagram of an up-tree with a child of height $h-1$.]

Diagram: A tree T of height h must have a child T_2 of height $h-1$.

$$W(T) = W(T_1) + W(T_2) \geq 2^{h-1} + 2^{h-1} = 2^h$$

Analysis of Union by size/height

- Let T be an up-tree of size n formed by union by size/height. Let h be its height.
- $n \geq 2^h$ (just proved)
- $\log n \geq h$
- Find(x) in tree T takes $O(\log n)$ time.
- Can we do better?
Worst Case for Union by size/height

Example of Worst Cast (cont’)

A binomial tree

If there are $n = 2^k$ nodes then the longest path from leaf to root has length $k = \log_2(n)$.
Path Compression

- On a Find operation point all the nodes on the search path directly to the root.

Self-Adjustment Works
Exercise: Draw the result of Find(e)

Path Compression Find

```c
int PC_Find(int i) {
    int r = i;
    while (Up[r] != -1) //find root
        r = Up[r];
    if (i != r) { //compress path/
        int k = Up[i];
        while (k != r) {
            Up[i] = r;
            i = k;
            k = Up[k];
        }
    }
    return r;
}
```
Function Definition

Ackermann’s function was defined in 1920s by German mathematician and logician Wilhelm Ackermann (1896-1962).

A(m,n), m, n ∈ N such that,

A(0, n) = n + 1, n ≥ 0;
A(m,0) = A(m-1, 1), m > 0;
A(m,n) = A(m-1, A(m, n-1)), m, n > 0;

Example

A(1, 2) = A(0, A(1, 1))
= A(0, A(0, A(1, 0)))
= A(0, A(0, A(0, 1)))
= A(0, A(0, 2))
= A(0, 3)
= 4

Simple addition and subtraction!!
Equivalent Definition

\[
\begin{align*}
A(0, n) &= n + 1 \\
A(1, n) &= 2 + (n + 3) - 3 \\
A(2, n) &= 2 \times (n + 3) - 3 \\
A(3, n) &= 2^n + 3 - 3 \\
A(4, n) &= 2^{2^{\ldots^{2}}} - 3 \\
&\quad \text{(n + 3 terms)}
\end{align*}
\]

Terms of the form \(2^{2^{\ldots^{2}}}\) are known as power towers. It is a well defined total function that grows so fast.

Inverse of Ackermann’s Function

\[
\alpha(m, n) = \min \{ i \geq 1 : A(i, \lfloor m / n \rfloor) > \log n \}
\]

\(\alpha(x, y)\) is a really slowly growing function.

How slow does \(\alpha(x, y)\) grow?

\(\alpha(x, y) = 4\) for \(x\) far larger than the number of atoms in the universe \(2^{300}\).

\(\alpha\) shows up in:

- Computation Geometry (surface complexity)
- Combinatorics of sequences
Disjoint Union / Find with Union by size/height and Path Compression

- Worst case time complexity for a W-Union/R-Union is $O(1)$ and for a PC-Find is $O(\log n)$.
- The total time complexity for $m \geq n$ operations on n elements is $O(m \alpha(m, n))$
 - $\alpha(m, n) \leq 4$ for all reasonable n. Essentially constant time per operation!

Amortized Complexity

- For disjoint union / find with union by size/height and path compression.
 - Amortized time per operation is essentially a constant.
 - Worst case time for a single union is $O(1)$.
 - Worst case time for a single PC-Find is $O(\log n)$.
- An individual operation can be costly, but over time the average cost per operation is not.
Cute Application
- Build a random maze by erasing edges.

Cute Application
- Pick Start and End

Start

End
Cute Application

- Repeatedly pick random edges to delete.

Desired Properties

- None of the boundary is deleted
- Every cell is reachable from every other cell.
- There are no cycles – no cell can reach itself by a path unless it retraces some part of the path.
A Cycle, not allowed

A Good Solution
A Hidden Tree

Number the Cells

We have disjoint sets \(S = \{ \{1\}, \{2\}, \{3\}, \{4\}, \ldots \{36\} \} \) each cell is a singleton set.

We have all possible edges \(E = \{(1,2), (1,7), (2,8), (2,3), \ldots \} \) 60 edges total, representing the neighborhood relation.

<table>
<thead>
<tr>
<th>Start</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
</tr>
</tbody>
</table>
Basic Algorithm

- \(S = \) set of sets of connected cells
- Initially, \(S = \{\{1\}, \{2\}, \ldots, \{n^2\}\} \)
- \(E = \) set of edges, representing the neighborhood of each cell.

```
Alg. CreateMaze (S, E) {
    while (|S| > 1) {
        pick a random, unused edge (x,y) from E;
        u = Find(x);
        v = Find(y);
        if (u \neq v) \{ Union(u,v); remove (x, y) from E \}
        else mark (x, y) as "used";
    }
    return E;
} // All remaining members of E form the maze.
```

Example Step

Start

\begin{array}{ccccccc}
1 & 2 & 3 & 4 & 5 & 6 \\
7 & 8 & 9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16 & 17 & 18 \\
19 & 20 & 21 & 22 & 23 & 24 \\
25 & 26 & 27 & 28 & 29 & 30 \\
31 & 32 & 33 & 34 & 35 & 36
\end{array}

Pick (8,14)

\[S = \{1,2,7,8,9,13,19\}, \{3\}, \{4\}, \{5\}, \{6\}, \{10\}, \{11,17\}, \{12\}, \{14,20,26,27\}, \{15,16,21\}, \{22,23,24,29,30,32\}, \{33,34,35,36\} \]
Example

\{1,2,7,8,9,13,19\} \quad \{3\} \quad \{4\} \quad \{5\} \quad \{6\} \quad \{10\} \quad \{11,17\} \quad \{12\} \quad \{14,20,26,27\} \quad \{15,16,21\} \quad \{22,23,24,29,39,32\} \quad \{33,34,35,36\}

Find(8) = 7 \quad \text{Find(14) = 20}

Union(7,20)

\{1,2,7,8,9,13,19,14,20,26,27\} \quad \{3\} \quad \{4\} \quad \{5\} \quad \{6\} \quad \{10\} \quad \{11,17\} \quad \{12\} \quad \{15,16,21\} \quad \{22,23,24,29,39,32\} \quad \{33,34,35,36\}

Example

\{1,2,7,8,9,13,19\} \quad \{3\} \quad \{4\} \quad \{5\} \quad \{6\} \quad \{10\} \quad \{11,17\} \quad \{12\} \quad \{14,20,26,27\} \quad \{15,16,21\} \quad \{22,23,24,29,39,32\} \quad \{33,34,35,36\}

Pick (19,20)

Start \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6

7 \quad 8 \quad 9 \quad 10 \quad 11 \quad 12

13 \quad 14 \quad 15 \quad 16 \quad 17 \quad 18

19 \quad 20 \quad 21 \quad 22 \quad 23 \quad 24

25 \quad 26 \quad 27 \quad 28 \quad 29 \quad 30

31 \quad 32 \quad 33 \quad 34 \quad 35 \quad 36

End \quad \{22,23,24,29,39,32\} \quad \{33,34,35,36\}
Example at the End

\begin{array}{cccccc}
\text{Start} & 1 & 2 & 3 & 4 & 5 & 6 \\
7 & 8 & 9 & 10 & 11 & 12 \\
13 & 14 & 15 & 16 & 17 & 18 \\
19 & 20 & 21 & 22 & 23 & 24 \\
25 & 26 & 27 & 28 & 29 & 30 \\
31 & 32 & 33 & 34 & 35 & 36 \text{End}
\end{array}

\{1,2,3,4,5,6,7,\ldots 36\}

A larger size maze
A Maze Generator

Algorithm MazeGenerator(G, E):

Input: A grid, G, consisting of n cells and a set, E, of m "walls," each of which divides two cells, x and y, such that the walls in E initially separate and isolate all the cells in G

Output: A subset, R of E, such that removing the edges in R from E creates a maze defined on G by the remaining walls

while R has fewer than n − 1 edges do
 Choose an edge, (x, y), in E uniformly at random from among those previously unchosen
 if find(x) ≠ find(y) then
 union(find(x), find(y))
 Add the edge (x, y) to R

return R