Union-Find Structures

Equivalence Relation

Relation R on S is a subset of $S \times S$.

- For every pair of elements a, b from a set S, $a \ R \ b$ is either true or false.
- $a \ R \ b$ is true iff (a, b) is in R. In this case, we say a is related to b.

An equivalence relation satisfies:

1. (Reflexive) $a \ R \ a$
2. (Symmetric) $a \ R \ b$ iff $b \ R \ a$
3. (Transitive) $a \ R \ b$ and $b \ R \ c$ implies $a \ R \ c$
Equivalence Classes

- Given a set of things...
 \{ grapes, blackberries, plums, apples, oranges, peaches, raspberries, lemons, bananas \}

- ...define the equivalence relation
 All citrus fruit is related, all berries, all stone fruits, ...

- ...partition them into related subsets
 \{ grapes \}, \{ blackberries, raspberries \}, \{ oranges, lemons \}, \{ plums, peaches \}, \{ apples \}, \{ bananas \}

Everything belongs to a unique class.
Everything in an equivalence class is related to each other.
Determining equivalence classes

- Idea: give every equivalence class a name
 - \{ oranges, limes, lemons \} = “like-ORANGES”
 - \{ peaches, plums \} = “like-PEACHES”
 - Etc.

- To answer if two fruits are related:
 - FIND the class name of one fruit.
 - FIND the class name of the other fruit.
 - Are they the same name?
Building Equivalence Classes

- Start with disjoint, singleton sets:
 - { apples }, { bananas }, { peaches }, ...

- As you gain information about the equivalence relation, take UNION of sets that are now related:
 - { peaches, plums }, { limes, oranges, lemons }, { apples }, { bananas }, ...

- E.g. if peaches R limes, then we get
 - { peaches, plums, limes, oranges, lemons }
Disjoint Union - Find

- Maintain a set of pairwise disjoint sets.
 - \{3,5,7\} , \{4,2,8\}, \{9\}, \{1,6\}

- Each set has a unique name, using one of its members
 - \{3,5,7\} , \{4,2,8\}, \{9\}, \{1,6\}
Union

- Union(x, y) – take the union of two sets named x and y
 - \{3,5,7\}, \{4,2,8\}, \{9\}, \{1,6\}

Union(5,1)

- \{3,5,7,1,6\}, \{4,2,8\}, \{9\},
Find

- **Find(x)** – return the name of the set containing x.
 - `{3, 5, 7, 1, 6}`, `{4, 2, 8}`, `{9}`,
 - Find(1) = 5
 - Find(4) = 8
Example

\[S: \{1,2,7,8,9,13,19\} \]
\[\{3\} \]
\[\{4\} \]
\[\{5\} \]
\[\{6\} \]
\[\{10\} \]
\[\{11,17\} \]
\[\{12\} \]
\[\{14,20,26,27\} \]
\[\{15,16,21\} \]
\[\ldots \]
\[\{22,23,24,29,39,32\} \]
\[33,34,35,36\} \]

Find(8) = 7
Find(14) = 20
Union(7,20)

\[S: \{1,2,7,8,9,13,19,14,20,26,27\} \]
\[\{3\} \]
\[\{4\} \]
\[\{5\} \]
\[\{6\} \]
\[\{10\} \]
\[\{11,17\} \]
\[\{12\} \]
\[\{15,16,21\} \]
\[\ldots \]
\[\{22,23,24,29,39,32\} \]
\[33,34,35,36\} \]
Implementing Disjoint Sets

- \(n \) elements
 Total Cost of: \(m \) finds, at most \(n - 1 \) unions
- Target complexity: total \(\mathcal{O}(m+n) \) i.e. \(\mathcal{O}(1) \) amortized per operation.

- \(\mathcal{O}(1) \) worst-case for find as well as union would be great, but it’s simply not true.
- Known result: find and union can be done practically in \(\mathcal{O}(1) \) time.
List-based Implementation

- Each set is stored in a sequence represented with a linked-list
- Each node should store an object containing the element and a reference to the set name
Analysis of List-based Representation

- Worst case time for find is $O(1)$.
- When doing a union, always move elements from the smaller set to the larger set:
 - Each time an element is moved it goes to a set of size at least double its old set.
 - Thus, an element can be moved at most $O(\log n)$ times.
- Total time needed to do $n - 1$ unions and m finds is $O(n \log n + m)$.
Implementing Disjoint Sets

- Observation: *trees* let us find many elements given one root...

- Idea: if we *reverse* the pointers (make them point up from child to parent), we can find a single root from many elements...

- Idea: Use one tree for each equivalence class. The name of the class is the tree root.
Up-Tree for Union/Find

Initial state

1 2 3 4 5 6 7

Intermediate state

1 3 7

2 5 4

6

Roots are the names of each set.
Find Operation

- **Find(x)** follow x to the root and return the root.
- **Cost:** $O(h)$, h: height of the tree

Find(6) = 7
Union Operation

- Union(i,j) - assuming i and j roots, point i to j.
- Cost: O(1)
Simple Implementation

- Array of indices

```
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>-</td>
</tr>
</tbody>
</table>
```

$Up[x]$ = “-” or “-1”, means x is a root.
void Union(int[] Up, int x, int y) {
 //precondition: x and y are roots
 Up[x] = y;
}

Constant Time!
FIND

- Design Find operator
 - Recursive version
 - Iterative version

```java
static int Find(int[] Up, int x) {
  //Pre: Up[0..(siz-1)] is the parent info;
  // x is in the range 0 to size-1
  if (Up[x] == "-1") return x;
  return Find(Up[x]);
}
```

Complexity: depth of x in the tree.
A Bad Case

Find(1) n steps!!

m finds: $O(mn)$
Now this doesn’t look good 😞

Can we do better? Yes!

1. Improve **union** so that **find** only takes $O(\log n)$
 - Union-by-size
 - Union-by-height (height)
 - The cost of m finds is $\Theta(m \log n)$

2. Improve **find** so that it becomes even better!
 - Path compression
 - Reduces complexity to **almost** $O(1)$ per operation
Union by size/height

- Union by size (weight)
 - Always point the smaller tree to the root of the larger tree

- Union by height (rank)
 - Always point the shorter tree to the root of the higher tree
Elegant Array Implementation

Up size

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up size</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Up height

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up height</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
void W_Union(int i, j) {
 //Pre: i and j are roots/
 int wi = size[i];
 int wj = size[j];
 if (wi < wj) {
 Up[i] = j;
 size[j] = wi + wj;
 } else {
 Up[j] = i;
 size[i] = wi + wj;
 }
}

Computing time?
Union by height

```c
void R_Union(int i, j){
    //Pre: i and j are roots/
    int ri = height[i];
    int rj = height[j];
    if (ri < rj) {
        Up[i] = j;
    } else if (ri > rj) {
        Up[j] = i;
    } else { // ri == rj
        height[j]++;
        Up[j] = i;
    }
    }
}
```

Computing time?
Example Again

Union(1,2)
Union(2,3)
... Union(n-1,n)

Find(1) constant time
Analysis of Union by size/height

- **Theorem**: With union by size/height an up-tree of height h has size at least 2^h.
- **Proof by induction on height**
 - **Basis**: $h = 0$. The up-tree has one node, $2^0 = 1$
 - **Inductive step**: Assume true for all $h' < h$.

A tree T of height h must have a child T_2 of height $h-1$.

$$W(T_1) \geq W(T_2) \geq 2^{h-1}$$

$$W(T) = W(T_1) + W(T_2) \geq 2^{h-1} + 2^{h-1} = 2^h$$
Analysis of Union by size/height

- Let T be an up-tree of size n formed by union by size/height. Let h be its height.
- $n \geq 2^h$ (just proved)
- $\log n \geq h$

- Find(x) in tree T takes $O(\log n)$ time.
- Can we do better?
Worst Case for Union by size/height

\[\frac{n}{2} \text{ W-Unions} \]

\[\frac{n}{4} \text{ W-Unions} \]

\[\frac{n}{8} \text{ W-Unions} \]
After \(n - 1 = \frac{n}{2} + \frac{n}{4} + \ldots + 1 \) Unions

A binomial tree

If there are \(n = 2^k \) nodes then the longest path from leaf to root has length \(k = \log_2(n) \).
Path Compression

- On a Find operation point all the nodes on the search path directly to the root.
Self-Adjustment Works

PC-Find(x)
Exercise: Draw the result of Find(e)
int PC_Find(int i) {
 int r = i;
 while (Up[r] != -1) //find root
 r = Up[r];
 if (i != r) { //compress path/
 int k = Up[i];
 while (k != r) {
 Up[i] = r;
 i = k;
 k = Up[k];
 }
 }
 return r;
}
Function Definition

Ackermann’s function was defined in 1920s by German mathematician and logician Wilhelm Ackermann (1896-1962).

\[A(m, n), \quad m, n \in \mathbb{N} \] such that,

\[
\begin{align*}
A(0, n) &= n + 1, & n \geq 0; \\
A(m, 0) &= A(m-1, 1), & m > 0; \\
A(m, n) &= A(m-1, A(m, n-1)), & m, n > 0;
\end{align*}
\]
Example

\[A(1, 2) = A(0, A(1, 1)) \]
\[= A(0, A(0, A(1, 0))) \]
\[= A(0, A(0, A(0, 1))) \]
\[= A(0, A(0, 2)) \]
\[= A(0, 3) \]
\[= 4 \]

Simple addition and subtraction!!
Equivalent Definition

\[A(0, n) = n + 1 \]
\[A(1, n) = 2 + (n + 3) - 3 \]
\[A(2, n) = 2 \times (n + 3) - 3 \]
\[A(3, n) = 2^{n+3} - 3 \]
\[A(4, n) = 2^{2^{2^{\ldots^{2}}}} - 3 \quad (n + 3 \text{ terms}) \]

\ldots

Terms of the form \(2^{2^{\ldots^{2}}}\) are known as power towers. It is a well defined total function that grows so fast.
Inverse of Ackermann’s Function

\[\alpha(m, n) = \min\{ i \geq 1 : A(i, \lfloor m/n \rfloor) > \lg n \} \]

\(\alpha(x, y) \) is a really slowly growing function.

How slow does \(\alpha(x, y) \) grow?

\(\alpha(x, y) = 4 \) for \(x \) far larger than the number of atoms in the universe \((2^{300}) \)

\(\alpha \) shows up in:

- Computation Geometry (surface complexity)
- Combinatorics of sequences
Disjoint Union / Find with Union by size/height and Path Compression

- Worst case time complexity for a W-Union/R-Union is $O(1)$ and for a PC-Find is $O(\log n)$.
- The total time complexity for $m \geq n$ operations on n elements is $O(m \alpha(m, n))$
 - $\alpha(m, n) \leq 4$ for all reasonable n. Essentially constant time per operation!
Amortized Complexity

- For disjoint union / find with union by size/height and path compression.
 - Amortized time per operation is essentially a constant.
 - Worst case time for a single union is $O(1)$.
 - Worst case time for a single PC-Find is $O(\log n)$.
- An individual operation can be costly, but over time the average cost per operation is not.
Cute Application

- Build a random maze by erasing edges.
Cute Application

- Pick Start and End

Start

End
Cute Application

- Repeatedly pick random edges to delete.
Desired Properties

- None of the boundary is deleted
- Every cell is reachable from every other cell.
- There are no cycles – no cell can reach itself by a path unless it retraces some part of the path.
A Cycle, not allowed
A Good Solution
A Hidden Tree
We have disjoint sets $S = \{ \{1\}, \{2\}, \{3\}, \{4\}, \ldots \{36\} \}$ each cell is a singleton set.

We have all possible edges $E = \{ (1,2), (1,7), (2,8), (2,3), \ldots \}$ 60 edges total, representing the neighborhood relation.
Basic Algorithm

- $S =$ set of sets of connected cells
- Initially, $S = \{ \{1\}, \{2\}, ..., \{n^2\} \}$
- $E =$ set of edges, representing the neighborhood of each cell.

```
Alg. CreateMaze (S, E) {
    while ($|S| > 1$) {
        pick a random, unused edge (x,y) from E;
        u = Find(x);
        v = Find(y);
        if (u $\neq$ v) { Union(u,v); remove (x, y) from E }
        else mark (x, y) as “used”;
    }
    return E;
}  // All remaining members of E form the maze.
```
Example Step

Pick \((8, 14)\)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

\(S\) = \{1,2,7,8,9,13,19\} \{3\} \{4\} \{5\} \{6\} \{10\} \{11,17\} \{12\} \{14,20,26,27\} \{15,16,21\} . . \{22,23,24,29,30,32,33,34,35,36\}
Example

\[S = \{1,2,7,8,9,13,19\} \]
\[\{3\} \]
\[\{4\} \]
\[\{5\} \]
\[\{6\} \]
\[\{10\} \]
\[\{11,17\} \]
\[\{12\} \]
\[\{14,20,26,27\} \]
\[\{15,16,21\} \]
\[\ldots \]
\[\{22,23,24,29,39,32,33,34,35,36\} \]

Find(8) = 7
Find(14) = 20
Union(7, 20)

\[S = \{1,2,7,8,9,13,19,14,20,26,27\} \]
\[\{3\} \]
\[\{4\} \]
\[\{5\} \]
\[\{6\} \]
\[\{10\} \]
\[\{11,17\} \]
\[\{12\} \]
\[\{14,20,26,27\} \]
\[\{15,16,21\} \]
\[\ldots \]
\[\{22,23,24,29,39,32,33,34,35,36\} \]
Example

Pick (19,20)

<table>
<thead>
<tr>
<th>Start</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

End

\[S = \{1, 2, 7, 8, 9, 13, 19, 14, 20, 26, 27\} \]

\[\{3\} \]

\[\{4\} \]

\[\{5\} \]

\[\{6\} \]

\[\{10\} \]

\[\{11, 17\} \]

\[\{12\} \]

\[\{15, 16, 21\} \]

\[\{22, 23, 24, 29, 39, 32, 33, 34, 35, 36\} \]
Example at the End

\[S \{1,2,3,4,5,6,7,\ldots \, 36\} \]

<table>
<thead>
<tr>
<th>Start</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>End</td>
</tr>
</tbody>
</table>
A larger size maze
A Maze Generator

Algorithm MazeGenerator\((G, E)\):

Input: A grid, \(G\), consisting of \(n\) cells and a set, \(E\), of \(m\) “walls,” each of which divides two cells, \(x\) and \(y\), such that the walls in \(E\) initially separate and isolate all the cells in \(G\).

Output: A subset, \(R\) of \(E\), such that removing the edges in \(R\) from \(E\) creates a maze defined on \(G\) by the remaining walls.

while \(R\) has fewer than \(n - 1\) edges **do**

Choose an edge, \((x, y)\), in \(E\) uniformly at random from among those previously unchosen

if \(\text{find}(x) \neq \text{find}(y)\) **then**

union\((\text{find}(x), \text{find}(y))\)

Add the edge \((x, y)\) to \(R\)

return \(R\)