Hash Tables

Presentation for use with the textbook Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Hash Tables

int getRandomNumber ()

return Y; // chosen by fair dice roll.
// quaranteed to be random.
3

xked. http://xked.com/221/. “Random Number.” Used with permission under Creative Commons 2.5 License.

I

The Search Problem

1 Find items with keys matching a given search
key
= Given an array A, containing n keys, and a search key
x, find the index i such as x=A[i]

= As in the case of sorting, a key could be part of a
large record.

example of a record

Key other data

9/26/2019

Hash Tables 9/26/2019

Special Case: Dictionaries

o Dictionary = data structure that supports mainly two
basic operations: insert a new item and return an
item with a given key.

= Queries: return information about the set S with key k:
+ get (S, k)

= Modifying operations: change the set
+ put (S, k): insert new or update the item of key k.
+ remove (S, k) — not very often

3
Direct Addressing
o Assumptions:
= Key values are distinct
= Each key is drawn from a universe U = {0, 1, . . ., N -1}
o Idea:
= Store the items in an array, indexed by keys
¢ Direct-address table representation:
— Anarray T[0...N-1]
— Each slot, or position, in T corresponds to a key in U
— For an element x with key k, a pointer to x (or x itself) will
be placed in location T[k]
— If there are no elements with key k in the set, T[k] is empty,
represented by NIL
4
4

Hash Tables

Direct Addressing (cont’d)

T

key satellite data

L3
2
3

y Y

5

(actual 3
keys) 3 8

O o 9 o kBN - O

(insert/delete in O(1) time)

Comparing Different Implementations

o Implementing dictionaries using:
= Direct addressing
Ordered/unordered arrays
Ordered linked lists

Balanced search trees

put get
direct addressing 0o(1) 0o(1)
ordered array O(N) O(IgN)
unordered array 0(1) O(N)
ordered list O(N) O(N)
balance search tree O(IgN) O(IgN)

6

9/26/2019

Hash Tables

Hash Tables

a When n is much smaller than max(U), where
U is the set of all keys, a hash table requires
much less space than a direct-address
table

= Can reduce storage requirements to O(n)

= Can still get O(1) search time, but on the average
case, not the worst case

Hash Tables

= Use a function h to compute the slot for each key
= Store the element in slot h(k)

a A hash function h transforms a key into an index in a
hash table T[O..N-1]:

hi- U011 N -1}
o We say that k hashes to h(k), hash value of k.

o Advantages:
= Reduce the range of array indices handled: N instead of max(U)

= Storage is also reduced

9/26/2019

Hash Tables

Example: HASH TABLES
D A E—— 0

h(k,)
h(ks)

h(ky) = h(ks)
h(ks)

m-1

9
Example
v
Suppose that the keys are nine-digit social security numbers
Possible hash function
h(ssn) = sss mod 100 (last 2 digits of ssn)
e.g., if ssn = 10123411 then /#(10123411) = 11)
10
10

9/26/2019

Hash Tables

Do you see any problems
with this approach?

0

h(k,)
h(ky)
= h(k
(agtlgl K, (k) Co||(|sfc)>ns!
" h(ks)

m-1

11

11

Collisions

o Two or more keys hash to the same slot!!

o For a given set of n keys

= If n < N, collisions may or may not happen,
depending on the hash function

= If n> N, collisions will definitely happen (i.e., there
must be at least two keys that have the same
hash value)
o Avoiding collisions completely is hard, even
with a good hash function

12

12

9/26/2019

Hash Tables

Hash Functions

o A hash function transforms a key into a table address
o What makes a good hash function?
(1) Easy to compute

(2) Approximates a random function: for every
input, every output is equally likely (simple
uniform hashing)

o In practice, it is very hard to satisfy the simple
uniform hashing property

= i.e., we don't know in advance the probability
distribution that keys are drawn from

13

13

Good Approaches for Hash Functions

o Minimize the chance that closely related keys hash to
the same slot

= Strings such as stop, tops, and pots should hash to different
slots

o Derive a hash value that is independent from
any patterns that may exist in the distribution
of the keys.

14

14

9/26/2019

Hash Tables

The Division Method

o Idea:

= Map a key k into one of the N slots by taking the
remainder of k divided by N

h(k) = k mod N
o Advantage:
» fast, requires only one operation
o Disadvantage:
= Certain values of N are bad, e.g.,
* power of 2
+ non-prime numbers

15

15

Example - The Division Method 97

16838 567
5758 35
10113 25

a If N = 2p, then h(k) is just the least 17515 55

significant p bits of k “sexr 1

23010 21
m p=1=N=2 7419 47

= h(k) = {0, 1}, least significant 1 bit of k o

L - 2749 33
»p=2=N=4 12767 60

= h(k) = {0, 1, 2, 3}, least significant 2 bits of k 9084 63
12060 32

Choose N to be a prime, not close to a e o

25089 63
power of 2 21183 37

_ 25137 14
. Column 2: kmod 97 ———— 95566 55

. Column3: k mod 100 T wes o
20495 28

10311 29

16 11367 18

16

9/26/2019

Hash Tables 9/26/2019

The Multiplication Method

Idea:
Multiply key k by a constant A, where 0< A <1

O

Extract the fractional part of kA

O

Multiply the fractional part by N

O

a Take the floor of the result
h(k) = LN (kA - [kAJ)]

o Disadvantage: A little slower than division method

O

Advantage: Value of N is not critical, e.g., typically 2r

17

17

Hash Functions

o A hash function is a The hash code is
usually specified as the applied first, and the
composition of two compression; fnction

i is applied next on the
functions: result, i.e.,
Hash code: h(x) = h,(h,(x))
h,: keys — integers o The goal of the hash

function is to
“disperse” the keys in
an apparently random
Typically, h, is mod N. way

Compression function:
h,: integers — [0, N — 1]

18

Hash Tables

o Polynomial accumulation:
= We partition the bits of the

key into a sequence of
components of fixed length
(e.g., 8, 16 or 32 bits)
3,8, .-

We evaluate the polynomial
p@)=a,+a,z +a,22 + ...

a2t
at a fixed value z, ignoring
overflows
Especially suitable for strings
(e.g., the choice z = 33 gives
at most 6 collisions on a set
of 50,000 English words)

Typical Function for A4,

o Polynomial p(z) can be
evaluated in O(n) time
using Horner’ s rule:

= The following

polynomials are
successively computed,
each from the previous
one in O(1) time

pO(Z) =an

P;i (2) =an i +2pi(2)

(i=1,2,...,n=1)

o We have p(z) =p,_,(2)

o Good values for z: 33, 37, 39,
and 41.

19

19
Compression Functions
o Division: o Random linear hash
= hy(y)=ymodN function:
= The size N of the = h,(y)=(ay + b) mod N
hash table is usually = a and b are random
chosen to be a prime nonnegative integers
= The reason has to do such that
with number theory amod N =0
and is beyond the = Otherwise, every
scope of this course integer would map to
the same value b
20
20

9/26/2019

10

Hash Tables

Handling Collisions

o We will review the following methods:
» Separate Chaining

= Open addressing
+ Linear probing

+ Quadratic probing
+ Double hashing

21

21

Handling Collisions Using Chaining

Idea:
= Put all elements that hash to the same slot into a
linked list T
/
o e 01 B e 01 P
/
/
/
(actual __" 1;"sl _H k:l _l_'l Jt?I/l
/
> k[/
k| k]]
/
= Slot j contains a pointer to the head of the list of all
elements that hash to 2

22

9/26/2019

11

Hash Tables

Collision with Chaining

o Choosing the size of the table
= Small enough not to waste space
= Large enough such that lists remain short

= Typically 1/5 or 1/10 of the total number of elements
o How should we keep the lists: ordered or not?

= Not ordered!
+ Insert is fast

+ Can easily remove the most recently inserted elements

23

23

Insert in Hash Tables

Algorithm put(k, v): //
t = A[h(k)].put(k,v)
n=n+1
returnt

o Worst-case running time is O(1)

o Assumes that the element being inserted isn't already
in the list

o It would take an additional search to check if it was
already inserted

24

24

9/26/2019

12

Hash Tables 9/26/2019

Deletion in Hash Tables

Algorithm remove(k):
t = A[h(k)].remove(k)
if t # null then
n=n-1
return t

o Need to find the element to be deleted.
o Worst-case running time:

= Deletion depends on searching the corresponding list

25

25
Searching in Hash Tables
Algorithm get(k):
return A[h(k)].get(k)
o Running time is proportional to the length of the list
of elements in slot h(k)
26

13

Hash Tables 9/26/2019

Analysis of Hashing with Chaining:
Worst Case

a How long does it take to T

search for an element with a

given key?

o Worst case:

= All n keys hash to the same slot

= Worst-case time to search is —H\ chain

©O(n), plus time to compute the

hash function

27

27
Analysis of Hashing with Chaining:
Average Case
o Average case
= depends on how well the hash function T
distributes the n keys among the N slots i 0
o Simple uniform hashing assumption: 0
= Any given element is equally likely to hash —tn
into any of the N slots (i.e., probability of —1, 2
collision Pr(h(x)=h(y)), is 1/N) N3
o Length of a list: ——n
Tljlsize=n;, j=0,1,..., N -1 !
o Number of keys in the table: — Ny
N=No+Np* s+ Ny
o Load factor: Average value of n;: Ny-1 =0
Elnj=a=n/N
28
28

14

Hash Tables

Load Factor of a Hash Table

o Load factor of a hash table T: 0 T
o = n/N
= n = # of elements stored in the table _ﬁCha!n
chain
= N = # of slots in the table = # of linked
lists —1chain
o o is the average number of — 1 chain
elements stored in a chain N -1

ooacanbe<, = >1

29

29

Case 1: Unsuccessful Search
(i.e., item not stored in the table)

Theorem An unsuccessful search in a hash table takes expected time
O(1+) under the assumption of simple uniform hashing

(i.e., probability of collision Pr(h(x)=h(y)), is 1/N)
Proof

o Searching unsuccessfully for any key k
= need to search to the end of the list T[h(k)]
o Expected length of the list: E[n,y]= a = n/N
o Expected number of elements examined in this case is o
o Total time required is:
= O(1) (for computing the hash function) + o > G)(] + a)

30

30

9/26/2019

15

Hash Tables

Case 2: Successful Search

Successful search: O(1 + g)=@(l + a) time on the average

(search half of a list of length a plus O(1) time to compute /(%))

31

31

Analysis of Search in Hash Tables

a If N (# of slots) is proportional to n (# of

elements in the table):

. n = O(N)

. a = n/N = O(N)/N = O(1)

= Searching takes constant time on average

32

32

9/26/2019

16

Hash Tables

Open Addressing

o If we have enough contiguous memory to store all e.g, insert 14
the keys = store the keys in the table itself h(k) = k mod 1

w

a No need to use linked lists anymore

o Basic idea:

= put: if a slot is full, try another one,

until you find an empty one
= get: follow the same sequence of probes
= remove: more difficult ... (we'll see why)

o Search time depends on the length of the

probe sequence!

33

33

Generalize hash function notation:

a A hash function contains two arguments inseft-14

Now: (i) Key value, and (ii) Probe number

h(k,p), p=01,..N-1

o Probe sequences
[h(k,0), h(k,1), ..., h(k,N-1)]

= Must be a permutation of <0,1,...,N-1>

= There are NI possible permutations
= Good hash functions should be able to
produce all N! probe sequences Examplel
<1,5, 9>

34

34

9/26/2019

17

Hash Tables

9/26/2019

Common Open Addressing Methods

o Linear probing
o Quadratic probing
a Double hashing

o Note: None of these methods can generate
more than N2 different probing sequences!

35

35

Linear probing

o Idea: when there is a collision, check the next available
position in the table (i.e., probing)

h(k,i) = (hy(k) + a*i) mod N

a First slot probed: h,(k) /
o Second slot probed: h;(k) + 1 (a=1) /
o Third slot probed: h,(k)+2, and so on

o Can generate N probe sequences maximum, why? Q :

probe sequence: < hi(k), hi(k)+1, hi(k)+2,>
wrap around

36

36

18

Hash Tables

o Three cases:

element of equal key
(2) Position in table is empty

element

is found

beginning of the table

Linear probing: Searching for a key

(1) Position in table is occupied with an 0

o Case 3: probe the next index until the
element is found or an empty position

o The process wraps around to the

h(k,)

(3) Position in table occupied with a different h(k,)

h(k;) = h(ks)
h(ks)
N-1

37
Search with Linear Probing
o Consider a hash table A | Algorithm get(k)
that uses linear probing H<hk)
p<«0
3 get(k) repeat
= We start at cell h(k) ¢ <« AJi]
= We probe consecutive ifc=0
Iocatiqns until one of the return null
foIIOW|_ng occyrs _ else if c.getKey () = k
! onnu:]tgmo\erth key ks return c.get\Value()
+ An en"lnpty cell is found, els§ |
or i< (i+1)modN
+ N cells have been p<p+1
unsuccessfully probed until p=N
return null
38
38

9/26/2019

19

Hash Tables

Quadratic Probing

h(k,i) = (hy(k) + %) mod N

o Probe sequence:

0t probe = h(k) mod N

1t probe = (h(k) + 1) mod N
2t probe = (h(k) + 4) mod N
3t probe = (h(k) + 9) mod N

it probe = (h(k) + i) mod N

39

39
Quadratic Probing Example
insert(76) insert(40) insert(48) insert(5) insert(55)
76%7 =6 40%7=5 48%7=6 5%7=5 55%7 =6

0
1 insert(47)
BUL... 4707 = 5
2
3
4
5
® 76
40
40

9/26/2019

20

Hash Tables

Quadratic Probing:
Success guarantee for a. < 2

o| If N is prime and a < 2, then quadratic probing will find an empty slot
in N/2 probes or fewer, because each probe checks a different slot.

= ShowforallO < i,j < N/2andi # j
(h(x) + i%2) mod N = (h(x) + j2) mod N
= By contradiction: suppose that for some i # j:
(h(x) + i?) mod N = (h(x) + j2) mod N
= i2mod N = j2 mod N
= (i2 - j» mod N =0
= [+ 3@ - j)] mod N =0

a contradiction.

Conclusion: For any a < 2, quadratic probing will find an
empty slot; for bigger o, quadratic probing may find a slot

Because N is prime(i-j)or (i+j) must be zero, and neither can be,

41

Double Hashing

(1) Use one hash function to determine the first slot

(2) Use a second hash function to determine the
increment for the probe sequence

h(k,i) = (hy(k) + i hy(k)) mod N, i=0,1,...
a Initial probe: h,(k)
Second probe is offset by h,(k) mod N, so on ...
Advantage: avoids clustering
Disadvantage: harder to delete an element
Can generate N2 probe sequences maximum

]
a
]
]

42

42

9/26/2019

21

Hash Tables

Double Hashing: Example

79

h,(k) = k mod 13
h,(k) = 1+ (k mod 11)
h(k, i) = (hy(k) + i hy(k)) mod 13
o Insert key 14:

h;(14,0) =14 mod 13 =1

h(14, 1) = (h,(14) + h,(14)) mod 13
=(14+4)mod13 =5

h(14, 2) = (h,(14) + 2 h,(14)) mod 13
=(1+8)mod13 =9

69
98

72

OO NOODUT DN WNRFRO

14

—
o

50

=
=

—
N

43

43

“Analysis of Open Addressing

- Ignore the problem of clustering and assume that all probe
sequences are equally likely

Unsuccessful retrieval:

Prob(probe hits an occupied celly=a (load factor)
Prob(probe hits an empty cell)=1— g

probability that a probe terminates in 2 steps: a(l — a)
probability that a probe terminates in k steps: a* (1 — a)

What is the average number of steps in a probe ?

m .) . 1 1
E(#steps) =K§ka’1_l(l —a)< Ekai_l(l —a)=(-a) d=ay =12

W Nl B REEN ANENE_ A8 @)

a:ble d e |

44

9/26/2019

22

Hash Tables

Rehashing

Idea: When the table gets too full, create a bigger
table (usually 2x as large) and hash all the items
from the original table into the new table.

a When to rehash?
= half full (o = 0.5)
= when an insertion fails

= some other threshold
a Cost of rehashing? ‘

45

9/26/2019

23

