
Hash Tables 9/26/2019

1

1

Hash Tables

Presentation for use with the textbook Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

xkcd. http://xkcd.com/221/. “Random Number.” Used with permission under Creative Commons 2.5 License.

2

The Search Problem
 Find items with keys matching a given search

key
 Given an array A, containing n keys, and a search key

x, find the index i such as x=A[i]
 As in the case of sorting, a key could be part of a

large record.

1

2

Hash Tables 9/26/2019

2

3

Special Case: Dictionaries
 Dictionary = data structure that supports mainly two

basic operations: insert a new item and return an
item with a given key.
 Queries: return information about the set S with key k:

 get (S, k)
 Modifying operations: change the set

 put (S, k): insert new or update the item of key k.
 remove (S, k) – not very often

4

Direct Addressing
 Assumptions:

 Key values are distinct
 Each key is drawn from a universe U = {0, 1, . . . , N - 1}

 Idea:
 Store the items in an array, indexed by keys

• Direct-address table representation:
– An array T[0 . . . N - 1]
– Each slot, or position, in T corresponds to a key in U
– For an element x with key k, a pointer to x (or x itself) will
be placed in location T[k]
– If there are no elements with key k in the set, T[k] is empty,

represented by NIL

3

4

Hash Tables 9/26/2019

3

5

Direct Addressing (cont’d)

6

Comparing Different Implementations
 Implementing dictionaries using:

 Direct addressing
 Ordered/unordered arrays
 Ordered linked lists
 Balanced search trees

put get

ordered array

balance search tree

unordered array
ordered list

O(N)
O(1)

O(N)
O(lgN)

O(N)
O(lgN)

O(lgN)
O(N)

direct addressing O(1) O(1)

5

6

Hash Tables 9/26/2019

4

7

Hash Tables
 When n is much smaller than max(U), where

U is the set of all keys, a hash table requires
much less space than a direct-address
table
 Can reduce storage requirements to O(n)
 Can still get O(1) search time, but on the average

case, not the worst case

8

Hash Tables
 Use a function h to compute the slot for each key
 Store the element in slot h(k)

 A hash function h transforms a key into an index in a
hash table T[0…N-1]:

h : U → {0, 1, . . . , N - 1}

 We say that k hashes to h(k), hash value of k.

 Advantages:
 Reduce the range of array indices handled: N instead of max(U)

 Storage is also reduced

7

8

Hash Tables 9/26/2019

5

9

Example: HASH TABLES

U
(universe of keys)

K
(actual
keys)

0

m - 1

h(k3)

h(k2) = h(k5)

h(k1)
h(k4)

k1k4 k2

k5 k3

10

Example

9

10

Hash Tables 9/26/2019

6

11

Do you see any problems
with this approach?

U
(universe of keys)

K
(actual
keys)

0

m - 1

h(k3)

h(k2) = h(k5)

h(k1)
h(k4)

k1k4 k2

k5 k3

Collisions!

12

Collisions
 Two or more keys hash to the same slot!!
 For a given set of n keys

 If n ≤ N, collisions may or may not happen,
depending on the hash function

 If n > N, collisions will definitely happen (i.e., there
must be at least two keys that have the same
hash value)

 Avoiding collisions completely is hard, even
with a good hash function

11

12

Hash Tables 9/26/2019

7

13

Hash Functions
 A hash function transforms a key into a table address
 What makes a good hash function?

(1) Easy to compute
(2) Approximates a random function: for every

input, every output is equally likely (simple
uniform hashing)

 In practice, it is very hard to satisfy the simple
uniform hashing property
 i.e., we don’t know in advance the probability

distribution that keys are drawn from

14

Good Approaches for Hash Functions

 Minimize the chance that closely related keys hash to
the same slot
 Strings such as stop, tops, and pots should hash to different

slots

 Derive a hash value that is independent from
any patterns that may exist in the distribution
of the keys.

13

14

Hash Tables 9/26/2019

8

15

The Division Method
 Idea:

 Map a key k into one of the N slots by taking the
remainder of k divided by N

h(k) = k mod N
 Advantage:

 fast, requires only one operation
 Disadvantage:

 Certain values of N are bad, e.g.,
 power of 2
 non-prime numbers

16

Example - The Division Method

 If N = 2p, then h(k) is just the least
significant p bits of k
 p = 1  N = 2
 h(k) = {0, 1}, least significant 1 bit of k

 p = 2  N = 4
 h(k) = {0, 1, 2, 3}, least significant 2 bits of k

 Choose N to be a prime, not close to a
power of 2
 Column 2:
 Column 3:

k mod 97
k mod 100

N
97

N
100

15

16

Hash Tables 9/26/2019

9

17

The Multiplication Method
Idea:
 Multiply key k by a constant A, where 0 < A < 1
 Extract the fractional part of kA
 Multiply the fractional part by N
 Take the floor of the result

h(k) = N (kA - kA)

 Disadvantage: A little slower than division method
 Advantage: Value of N is not critical, e.g., typically 2p

18

Hash Functions

 A hash function is
usually specified as the
composition of two
functions:
Hash code:

h1: keys  integers

Compression function:
h2: integers  [0, N  1]

Typically, h2 is mod N.

 The hash code is
applied first, and the
compression function
is applied next on the
result, i.e.,

h(x) = h2(h1(x))

 The goal of the hash
function is to
“disperse” the keys in
an apparently random
way

17

18

Hash Tables 9/26/2019

10

19

Typical Function for H1
 Polynomial accumulation:

 We partition the bits of the
key into a sequence of
components of fixed length
(e.g., 8, 16 or 32 bits)

a0 a1 … an1

 We evaluate the polynomial
p(z)  a0  a1 z  a2 z2  …

…  an1zn1

at a fixed value z, ignoring
overflows

 Especially suitable for strings
(e.g., the choice z  33 gives
at most 6 collisions on a set
of 50,000 English words)

 Polynomial p(z) can be
evaluated in O(n) time
using Horner’s rule:
 The following

polynomials are
successively computed,
each from the previous
one in O(1) time

p0(z)  an1

pi (z)  ani1  zpi1(z)
(i  1, 2, …, n 1)

 We have p(z)  pn1(z)

 Good values for z: 33, 37, 39,
and 41.

20

Compression Functions
 Division:

 h2 (y)  y mod N

 The size N of the
hash table is usually
chosen to be a prime

 The reason has to do
with number theory
and is beyond the
scope of this course

 Random linear hash
function:
 h2 (y)  (ay  b) mod N

 a and b are random
nonnegative integers
such that

a mod N  0

 Otherwise, every
integer would map to
the same value b

19

20

Hash Tables 9/26/2019

11

21

Handling Collisions
 We will review the following methods:

 Separate Chaining
 Open addressing
 Linear probing
Quadratic probing
Double hashing

22

Handling Collisions Using Chaining
 Idea:

 Put all elements that hash to the same slot into a
linked list

 Slot j contains a pointer to the head of the list of all
elements that hash to j

21

22

Hash Tables 9/26/2019

12

23

Collision with Chaining
 Choosing the size of the table

 Small enough not to waste space
 Large enough such that lists remain short
 Typically 1/5 or 1/10 of the total number of elements

 How should we keep the lists: ordered or not?
 Not ordered!

 Insert is fast
 Can easily remove the most recently inserted elements

24

Insert in Hash Tables
Algorithm put(k, v): // k is a new key

t = A[h(k)].put(k,v)
n = n + 1
return t

 Worst-case running time is O(1)

 Assumes that the element being inserted isn’t already
in the list

 It would take an additional search to check if it was
already inserted

23

24

Hash Tables 9/26/2019

13

25

Deletion in Hash Tables
Algorithm remove(k):

t = A[h(k)].remove(k)
if t ≠ null then {k was found}

n = n - 1
return t

 Need to find the element to be deleted.
 Worst-case running time:

 Deletion depends on searching the corresponding list

26

Searching in Hash Tables
Algorithm get(k):

return A[h(k)].get(k)

 Running time is proportional to the length of the list

of elements in slot h(k)

25

26

Hash Tables 9/26/2019

14

27

Analysis of Hashing with Chaining:
Worst Case

 How long does it take to
search for an element with a
given key?

 Worst case:
 All n keys hash to the same slot

 Worst-case time to search is
(n), plus time to compute the
hash function

0

N - 1

T

chain

28

Analysis of Hashing with Chaining:
Average Case
 Average case

 depends on how well the hash function
distributes the n keys among the N slots

 Simple uniform hashing assumption:
 Any given element is equally likely to hash

into any of the N slots (i.e., probability of
collision Pr(h(x)=h(y)), is 1/N)

 Length of a list:
T[j].size = nj, j = 0, 1, . . . , N – 1

 Number of keys in the table:
n = n0 + n1 +∙ ∙ ∙ + nN-1

 Load factor: Average value of nj:
E[nj] =  = n/N

n0 = 0

nN – 1 = 0

T

n2
n3

nj

nk

27

28

Hash Tables 9/26/2019

15

29

Load Factor of a Hash Table
 Load factor of a hash table T:

 = n/N
 n = # of elements stored in the table

 N = # of slots in the table = # of linked
lists

  is the average number of
elements stored in a chain

  can be <, =, > 1

0

N - 1

T

chain
chain

chain

chain

30

Case 1: Unsuccessful Search
(i.e., item not stored in the table)

Theorem An unsuccessful search in a hash table takes expected time
under the assumption of simple uniform hashing

(i.e., probability of collision Pr(h(x)=h(y)), is 1/N)
Proof
 Searching unsuccessfully for any key k

 need to search to the end of the list T[h(k)]

 Expected length of the list: E[nh(k)] =  = n/N

 Expected number of elements examined in this case is 
 Total time required is:

 O(1) (for computing the hash function) +   (1) 

(1) 

29

30

Hash Tables 9/26/2019

16

31

Case 2: Successful Search

32

Analysis of Search in Hash Tables
 If N (# of slots) is proportional to n (# of

elements in the table):

 n = Θ(N)

  = n/N = Θ(N)/N = O(1)

 Searching takes constant time on average

31

32

Hash Tables 9/26/2019

17

33

Open Addressing
 If we have enough contiguous memory to store all

the keys  store the keys in the table itself
 No need to use linked lists anymore
 Basic idea:

 put: if a slot is full, try another one,
until you find an empty one

 get: follow the same sequence of probes
 remove: more difficult ... (we’ll see why)

 Search time depends on the length of the
probe sequence!

e.g., insert 14
h(k) = k mod 13

34

Generalize hash function notation:
 A hash function contains two arguments

now： (i) Key value, and (ii) Probe number

h(k,p), p=0,1,...,N-1

 Probe sequences
[h(k,0), h(k,1), ..., h(k,N-1)]

 Must be a permutation of <0,1,...,N-1>
 There are N! possible permutations
 Good hash functions should be able to

produce all N! probe sequences

insert 14

<1, 5, 9>
Example

33

34

Hash Tables 9/26/2019

18

35

Common Open Addressing Methods

 Linear probing
 Quadratic probing
 Double hashing

 Note: None of these methods can generate
more than N2 different probing sequences!

36

Linear probing
 Idea: when there is a collision, check the next available

position in the table (i.e., probing)
h(k,i) = (h1(k) + a*i) mod N

i=0,1,2,...
 First slot probed: h1(k)
 Second slot probed: h1(k) + 1 (a = 1)
 Third slot probed: h1(k)+2, and so on

 Can generate N probe sequences maximum, why?

probe sequence: < h1(k), h1(k)+1 , h1(k)+2 ,>
wrap around

35

36

Hash Tables 9/26/2019

19

37

Linear probing: Searching for a key
 Three cases:

(1) Position in table is occupied with an
element of equal key

(2) Position in table is empty
(3) Position in table occupied with a different

element
 Case 3: probe the next index until the

element is found or an empty position
is found

 The process wraps around to the
beginning of the table

0

N - 1

h(k3)

h(k2) = h(k5)

h(k1)
h(k4)

38

Search with Linear Probing
 Consider a hash table A

that uses linear probing
 get(k)

 We start at cell h(k)

 We probe consecutive
locations until one of the
following occurs
 An item with key k is

found, or
 An empty cell is found,

or
 N cells have been

unsuccessfully probed

Algorithm get(k)
i  h(k)
p  0
repeat

c  A[i]
if c  

return null
else if c.getKey ()  k

return c.getValue()
else

i  (i  1) mod N
p  p  1

until p  N
return null

37

38

Hash Tables 9/26/2019

20

39

Quadratic Probing

h(k,i) = (h1(k) + i2) mod N

 Probe sequence:
0th probe = h(k) mod N
1th probe = (h(k) + 1) mod N
2th probe = (h(k) + 4) mod N
3th probe = (h(k) + 9) mod N
. . .
ith probe = (h(k) + i2) mod N

40

Quadratic Probing Example

76

3

2

1

0

6

5

4

insert(76)
76%7 = 6

insert(40)
40%7 = 5

insert(48)
48%7 = 6

insert(5)
5%7 = 5

insert(55)
55%7 = 6

insert(47)
47%7 = 5But…

39

40

Hash Tables 9/26/2019

21

Quadratic Probing:
Success guarantee for  < ½

 If N is prime and  < ½, then quadratic probing will find an empty slot
in N/2 probes or fewer, because each probe checks a different slot.
 Show for all 0  i,j  N/2 and i  j

(h(x) + i2) mod N  (h(x) + j2) mod N
 By contradiction: suppose that for some i  j:

(h(x) + i2) mod N = (h(x) + j2) mod N
 i2 mod N = j2 mod N
 (i2 - j2) mod N = 0
 [(i + j)(i - j)] mod N = 0

Because N is prime(i-j)or (i+j) must be zero, and neither can be，
a contradiction.

Conclusion: For any  < ½, quadratic probing will find an
empty slot; for bigger , quadratic probing may find a slot

42

Double Hashing
(1) Use one hash function to determine the first slot
(2) Use a second hash function to determine the

increment for the probe sequence
h(k,i) = (h1(k) + i h2(k)) mod N, i=0,1,...

 Initial probe: h1(k)
 Second probe is offset by h2(k) mod N, so on ...
 Advantage: avoids clustering
 Disadvantage: harder to delete an element
 Can generate N2 probe sequences maximum

41

42

Hash Tables 9/26/2019

22

43

Double Hashing: Example

h1(k) = k mod 13
h2(k) = 1+ (k mod 11)

h(k, i) = (h1(k) + i h2(k)) mod 13
 Insert key 14:

h1(14, 0) = 14 mod 13 = 1
h(14, 1) = (h1(14) + h2(14)) mod 13

= (1 + 4) mod 13 = 5
h(14, 2) = (h1(14) + 2 h2(14)) mod 13

= (1 + 8) mod 13 = 9

79

69

98

72

50

0

9

4

2
3

1

5
6
7
8

10
11
12

14

44

Analysis of Open Addressing

a
1 a

(load factor)

k=0

43

44

Hash Tables 9/26/2019

23

45

Idea: When the table gets too full, create a bigger
table (usually 2x as large) and hash all the items
from the original table into the new table.

 When to rehash?
 half full ( = 0.5)
 when an insertion fails
 some other threshold

 Cost of rehashing?

Rehashing

45

