Ch05 Priority Queues & Heapsort

Wall Street during the Bankers Panic of 1907. From the New York Public Library’s Digital Gallery, in the Irma and Paul Milstein Division of United States History, Local History and Genealogy. 1907. Public domain image.
Priority Queue ADT

- A priority queue stores a collection of elements which have a total order.
- Each element has a key value key(x).
- Main methods of the Priority Queue ADT
 - `insert(x)` inserts an entry with key k and value x
 - `removeMin()` removes and returns the element with smallest key.

- This is the min-queue. Replace “min” by “max” we obtain the max-queue.

- Additional methods
 - `min()` returns, but does not remove, an entry with smallest key
 - `size()`
 - `isEmpty()`

- Applications:
 - Standby flyers
 - Auctions
 - Stock market
Total Order Relations

- Keys in a priority queue can be arbitrary objects on which an order is defined.
- Every pair of such keys must be comparable according to a total order.

- Mathematical concept of total order relation \leq
 - **Comparability** property: either $x \leq y$ or $y \leq x$
 - **Reflexive** property: $x \leq x$
 - **Antisymmetric** property: $x \leq y$ and $y \leq x \Rightarrow x = y$
 - **Transitive** property: $x \leq y$ and $y \leq z \Rightarrow x \leq z$
Example

- A sequence of priority queue methods:

<table>
<thead>
<tr>
<th>Method</th>
<th>Return Value</th>
<th>Priority Queue Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert(5,A)</td>
<td></td>
<td>{ (5,A) }</td>
</tr>
<tr>
<td>insert(9,C)</td>
<td></td>
<td>{ (5,A), (9,C) }</td>
</tr>
<tr>
<td>insert(3,B)</td>
<td></td>
<td>{ (3,B), (5,A), (9,C) }</td>
</tr>
<tr>
<td>min()</td>
<td>(3,B)</td>
<td></td>
</tr>
<tr>
<td>removeMin()</td>
<td>(3,B)</td>
<td></td>
</tr>
<tr>
<td>insert(7,D)</td>
<td></td>
<td>{ (5,A), (9,C) }</td>
</tr>
<tr>
<td>removeMin()</td>
<td>(5,A)</td>
<td>{ (5,A), (7,D), (9,C) }</td>
</tr>
<tr>
<td>removeMin()</td>
<td>(7,D)</td>
<td></td>
</tr>
<tr>
<td>removeMin()</td>
<td>(9,C)</td>
<td></td>
</tr>
<tr>
<td>removeMin()</td>
<td>null</td>
<td></td>
</tr>
<tr>
<td>isEmpty()</td>
<td>true</td>
<td>{ }</td>
</tr>
</tbody>
</table>

Priority Queue Sorting

- We can use a priority max-queue to sort a set of comparable elements
 1. Insert the elements one by one with a series of insert operations
 2. Remove the elements in sorted order with a series of removeMax operations
- The running time of this sorting method depends on the priority queue implementation.

Algorithm \textit{PQ-Sort}(S, C)

\textbf{Input} sequence \(S\), comparator \(C\) for the elements of \(S\)
\textbf{Output} sequence \(S\) sorted in increasing order according to \(C\)

\(P \leftarrow \) priority queue with comparator \(C\)

\textbf{while} \(\neg S.\text{isEmpty}()\)
 \(e \leftarrow S.\text{removeFirst}()\)
 \(P.\text{insert}(e)\)

\textbf{while} \(\neg P.\text{isEmpty}()\)
 \(e \leftarrow P.\text{removeMax}()\)
 \(S.\text{insertFirst}(e)\)
Some Definitions

- **Internal Sort**
 - The data to be sorted is all stored in the computer’s main memory.

- **External Sort**
 - Some of the data to be sorted might be stored in some external, slower, device.

- **In Place Sort**
 - The amount of extra space required to sort the data is $o(n)$, where n is the input size.
Sequence-based Priority Queue

- Implementation with an unsorted list

 ![Unsorted List](image)

 - Performance:
 - `insert` takes $O(1)$ time since we can insert the item at the beginning or end of the sequence
 - `removeMax` takes $O(n)$ time since we have to traverse the entire sequence to find the smallest key

- Implementation with a sorted list

 ![Sorted List](image)

 - Performance:
 - `insert` takes $O(n)$ time since we have to find the place where to insert the item
 - `removeMax` takes $O(1)$ time, since the smallest key is at the beginning
Selection-Sort, Insertion-Sort

- Selection-sort is a variation of PQ-sort where the priority queue is implemented with an unsorted sequence.
 - If an array is used, it can be implemented as in-place selection sort.

- Insertion-sort is a variation of PQ-sort where the priority queue is implemented with a sorted sequence.
 - If an array is used, it can be implemented as in-place insertion sort.
Selection-Sort Example

<table>
<thead>
<tr>
<th>Input: (7,4,8,2,5,3,9)</th>
<th>Priority Queue P</th>
<th>Sorted Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>removeMax():</td>
<td></td>
<td>(9)</td>
</tr>
<tr>
<td>(7,4,8,2,5,3)</td>
<td></td>
<td>(8,9)</td>
</tr>
<tr>
<td>removeMax():</td>
<td></td>
<td>(7,8,9)</td>
</tr>
<tr>
<td>(7,4,2,5,3)</td>
<td></td>
<td>(5,7,8,9)</td>
</tr>
<tr>
<td>removeMax():</td>
<td></td>
<td>(4,5,7,8,9)</td>
</tr>
<tr>
<td>(4,2,5,3)</td>
<td></td>
<td>(3,4,5,7,8,9)</td>
</tr>
<tr>
<td>removeMax():</td>
<td></td>
<td>(2,3,4,5,7,8,9)</td>
</tr>
<tr>
<td>(4,2,3)</td>
<td></td>
<td>(2,3,4,5,7,8,9)</td>
</tr>
<tr>
<td>removeMax():</td>
<td></td>
<td>(2,3,4,5,7,8,9)</td>
</tr>
<tr>
<td>(2)</td>
<td></td>
<td>(2,3,4,5,7,8,9)</td>
</tr>
<tr>
<td>removeMax():</td>
<td></td>
<td>(2,3,4,5,7,8,9)</td>
</tr>
<tr>
<td>()</td>
<td></td>
<td>(2,3,4,5,7,8,9)</td>
</tr>
</tbody>
</table>
Insertion-Sort Example

<table>
<thead>
<tr>
<th>Input:</th>
<th>Sequence S</th>
<th>Priority queue P</th>
</tr>
</thead>
<tbody>
<tr>
<td>(7,4,8,2,5,3,9)</td>
<td>(4,8,2,5,3,9)</td>
<td>(7)</td>
</tr>
<tr>
<td>insert(7):</td>
<td>(4,8,2,5,3,9)</td>
<td>(7)</td>
</tr>
<tr>
<td>insert(4):</td>
<td>(8,2,5,3,9)</td>
<td>(4,7)</td>
</tr>
<tr>
<td>insert(8):</td>
<td>(2,5,3,9)</td>
<td>(4,7,8)</td>
</tr>
<tr>
<td>insert(2):</td>
<td>(5,3,9)</td>
<td>(2,4,7,8)</td>
</tr>
<tr>
<td>insert(5):</td>
<td>(3,9)</td>
<td>(2,4,5,7,8)</td>
</tr>
<tr>
<td>insert(3):</td>
<td>(9)</td>
<td>(2,3,4,5,7,8)</td>
</tr>
<tr>
<td>insert(9):</td>
<td>()</td>
<td>(2,3,4,5,7,8,9)</td>
</tr>
</tbody>
</table>
Both insert and removeMax can be implemented using $O(\log n)$ time.

Thus, PQ-sort can run in $O(n \log n)$.

Can we have an in-place PQ-sort whose complexity is in $O(n \log n)$?

- Yes, use heaps for PQ.
What is a heap?

- A (max) heap is a binary tree storing keys at its internal nodes and satisfying the following properties:
 - **(Max) Heap-Order**: for every node \(v \) other than the root, \(key(v) \leq key(parent(v)) \)
 - **Complete Binary Tree**: let \(h \) be the height of the heap
 - for \(i = 0, \ldots, h - 2 \), there are \(2^i \) nodes of depth \(i \)
 - at depth \(h - 1 \), the nodes are listed from left to right without gaps.

- The last node of a heap is the rightmost node of depth \(h - 1 \)
Height of a Heap

- **Theorem:** A heap storing \(n \) keys has height \(O(\log n) \)

Proof: (we apply the complete binary tree property)
- Let \(h \) be the height of a heap storing \(n \) keys
- Since there are \(2^i \) keys at depth \(i = 0, \ldots, h - 1 \) and at least one key at depth \(h \), we have \(n \geq 1 + 2 + 4 + \ldots + 2^{h-1} + 1 \)
- Thus, \(n \geq 2^h \), i.e., \(h \leq \log n \).
Heaps and Priority Queues

- We can use a heap to implement a priority queue
- We store a (key, element) item at each node
- We keep track of the position of the last node
- For simplicity, we will show only the keys in the pictures

A min-heap:

(9, Jeff) ➔ (5, Pat) ➔ (7, Anna) ➔ (2, Sue) ➔ (6, Mark)
Insert into a Heap

- Method insert of the priority queue ADT corresponds to the insertion of a key k to the heap.
- The insertion algorithm consists of three steps:
 - Find the position for a new node and create a new node z.
 - Store k at z.
 - Restore the heap-order property by up-heap bubble (discussed next).
Up-Heap Bubbling

- After the insertion of a new key \(k \), the heap-order property may be violated.
- Algorithm up-heap-bubble restores the heap-order property by swapping \(k \) along an upward path from the insertion node.
- Up-heap-bubble terminates when the key \(k \) reaches the root or a node whose key is greater than or equal to \(k \).
- Since a heap has height \(O(\log n) \), up-heap-bubble runs in \(O(\log n) \) time.
removeMax from a Heap

- Method \texttt{removeMax} of the priority queue ADT corresponds to the removal of the root key from the heap.
- The removal algorithm consists of three steps:
 - Replace the root key with the key of the last node \(w \).
 - Release node \(w \).
 - Restore the heap-order property by \texttt{down-heap-bubble} (discussed next).
Down-heap bubbling (Heapify)

- After replacing the root key with the key k of the last node, the heap-order property may be violated.
- Algorithm down-heap-bubble (or heapify) restores the heap-order property by swapping key k along a downward path from the root.
- Down-heap-bubble terminates when key k reaches a leaf or a node whose key is less than or equal to k.
- Since a heap has height $O(\log n)$, down-heap-bubble runs in $O(\log n)$ time.
Heap-Sort

- Consider a priority queue with n items implemented by means of a max-heap
 - the additional space used is $O(n)$
 - methods `insert` and `removeMax` take $O(\log n)$ time.

- Using a heap-based priority queue, we can sort a sequence of n elements in $O(n \log n)$ time
- It can be implemented in-place ($O(1)$ additional space).
- The resulting algorithm is called heap-sort
- Heap-sort is much faster than quadratic sorting algorithms, such as insertion-sort and selection-sort, when n is very large.
We can represent a heap with n keys by means of an array of length n.

For the node at index i
- the left child is at index $2i + 1$
- the right child is at index $2i + 2$

Links between nodes are not explicitly stored.

The (first portion of) input array A is used as heap.

In-place (no additional array is needed) heap-sort:

For $k = 1$ to $n-1$
- A.insert($A[k]$);
For $k = n-1$ downto 1
- $A[k] = A$.removeMax();

- Time Complexity: $O(n \log n)$
Bottom-up Heap Construction

- We can construct a heap storing \(n \) given keys using a bottom-up construction with \(\log n \) phases.
- In phase \(i \), pairs of heaps with \(2^i - 1 \) keys plus one item are merged into heaps with \(2^{i+1} - 1 \) keys.
Merging Two (Min) Heaps

- We are given two heaps and a key k
- We create a new heap with the root node storing k and with the two heaps as subtrees
- We perform down-heap-bubble to restore the heap-order property
Example of Max Heap

A = [10, 7, 8, 25, 5, 11, 27, 16, 15, 4, 12, 6, 7, 23, 20]
Example (contd.)
Example (contd.)
Example (end)
Building a Heap

- Convert an array $A[1 \ldots n]$ into a max-heap ($n = \text{length}[A]$)
- The elements in the subarray $A[\lfloor n/2 \rfloor + 1 \ldots n]$ are leaves
- Apply MaxHeapify on elements between 1 and $\lfloor n/2 \rfloor$

Algorithm: BuildMaxHeap(A)
1. $n = \text{length}[A]$
2. for $i \leftarrow \lfloor n/2 \rfloor$ downto 0
3. do MaxHeapify(A, i, n)

A: [4, 1, 3, 2, 16, 9, 10, 14, 8, 7]
Maintaining the Heap Property

Assumptions:
- Left and Right subtrees of i are max-heaps
- $A[i]$ may be smaller than its children

Alg: MaxHeapify(A, i, n) {
1. $l \leftarrow \text{Left}(i)$; // Left($i$) = $2i+1$
2. $r \leftarrow \text{Right}(i)$; // Right($i$) = $2i+2$
3. $\text{max} \leftarrow i$
4. if ($l < n$ && $A[l] > A[\text{max}]$) $\text{max} \leftarrow l$;
5. if ($r < n$ && $A[r] > A[\text{max}]$) $\text{max} \leftarrow r$;
6. if ($\text{max} \neq i$) {
7. exchange $A[i] \leftrightarrow A[\text{max}]$;
8. MaxHeapify(A, max, n);
9. }}
Running Time of BUILD MAX HEAP

Alg: BuildMaxHeap(A)
1. \(n = \text{length}[A] \)
2. \(\text{for } i \leftarrow \left\lfloor n/2 \right\rfloor \text{ downto } 1 \)
3. \(\text{do MaxHeapify}(A, i, n) \)

\(\Rightarrow \) Running time: \(O(n \ \log n) \)

- This is not an asymptotically tight upper bound
Analysis

- We visualize the worst-case time of a heapify (or sift-down) with a given path that goes first right and then repeatedly goes left until the bottom of the heap (this path may differ from the actual heapify path).
- Since each edge is traversed by at most once by these paths, the total length of these paths is $O(n)$.
- Thus, bottom-up heap construction runs in $O(n)$ time.
- Bottom-up heap construction is faster than n successive insertions and speeds up the first phase of heap-sort.
MaxHeapify takes $O(h)$ \Rightarrow the cost of MaxHeapify on a node i is proportional to the height of the node i in the tree.

$$T(n) = \sum_{i=0}^{h} n_i h_i = \sum_{i=0}^{h} 2^i (h-i) = O(n)$$

<table>
<thead>
<tr>
<th>Height</th>
<th>Level</th>
<th>No. of nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_0 = 3 \left\lfloor \log n \right\rfloor$</td>
<td>$i = 0$</td>
<td>2^0</td>
</tr>
<tr>
<td>$h_1 = 2$</td>
<td>$i = 1$</td>
<td>2^1</td>
</tr>
<tr>
<td>$h_2 = 1$</td>
<td>$i = 2$</td>
<td>2^2</td>
</tr>
<tr>
<td>$h_3 = 0$</td>
<td>$i = 3 \left\lfloor \log n \right\rfloor$</td>
<td>2^3</td>
</tr>
</tbody>
</table>

$h_i = h - i$ height of the heap rooted at level i

$n_i = 2^i$ number of nodes at level i
Running Time of BUILD MAX HEAP

\[T(n) = \sum_{i=0}^{h} n_i h_i \]

Cost of MaxHeapify at level \(i \) * number of nodes at that level

\[= \sum_{i=0}^{h} 2^i (h - i) \]
Replace the values of \(n_i \) and \(h_i \) computed before

\[= \sum_{i=0}^{h} \frac{h - i}{2^{h-i}} 2^h \]
Multiply by \(2^h \) both at the nominator and denominator and write \(2^i \) as \(\frac{1}{2^{-i}} \)

\[= 2^h \sum_{k=0}^{h} \frac{k}{2^k} \]
Change variables: \(k = h - i \)

\[\leq n \sum_{k=0}^{\infty} \frac{k}{2^k} \]
The sum above is smaller than the sum of all elements to \(\infty \)

\[= O(n) \]
The sum above is smaller than 2

Running time of BuildMaxHeap: \(T(n) = O(n) \)
HeapSort(A)

- Convert an array $A[0 \ldots n-1]$ into a max-heap
 - The elements in the subarray $A[\lfloor n/2 \rfloor \ldots n-1]$ are leaves.
 - Apply MaxHeapify on elements between 0 and $\lfloor n/2 \rfloor - 1$
- Repeatedly swap the max heap element with the last unsorted element and call MaxHeapify to maintain the heap property.

Alg: HeapSort(A) {
 1. $n = A.length$;
 2. for $i \leftarrow \lfloor n/2 \rfloor$ downto 0
 3. MaxHeapify(A, i, n);
 4. for $i \leftarrow n - 1$ downto 1 { // $A[0..i]$ is a max heap
 5. exchange $A[i] \leftrightarrow A[0]$;
 6. MaxHeapify(A, 0, i); // $A[i..n-1]$ is sorted with max $(n - i)$
 7. }} // elements of the original array.
Example: $A = [7, 4, 3, 1, 2]$

MaxHeapify($A, 1, 4$)

MaxHeapify($A, 1, 3$)

MaxHeapify($A, 1, 2$)

MaxHeapify($A, 1, 1$)
Stability

- A **STABLE** sort preserves relative order of records with equal keys

Sorted on first key:

<table>
<thead>
<tr>
<th>Name</th>
<th>Key</th>
<th>Initial Key</th>
<th>Phone</th>
<th>Initial Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aaron</td>
<td>4</td>
<td>A</td>
<td>664-480-0023</td>
<td>097 Little</td>
</tr>
<tr>
<td>Andrews</td>
<td>3</td>
<td>A</td>
<td>874-088-1212</td>
<td>121 Whitman</td>
</tr>
<tr>
<td>Battle</td>
<td>4</td>
<td>C</td>
<td>991-878-4944</td>
<td>308 Blair</td>
</tr>
<tr>
<td>Chen</td>
<td>2</td>
<td>A</td>
<td>884-232-5341</td>
<td>11 Dickinson</td>
</tr>
<tr>
<td>Fox</td>
<td>1</td>
<td>A</td>
<td>243-456-9091</td>
<td>101 Brown</td>
</tr>
<tr>
<td>Furia</td>
<td>3</td>
<td>A</td>
<td>766-093-9873</td>
<td>22 Brown</td>
</tr>
<tr>
<td>Gazsi</td>
<td>4</td>
<td>B</td>
<td>665-303-0266</td>
<td>113 Walker</td>
</tr>
<tr>
<td>Kanaga</td>
<td>3</td>
<td>B</td>
<td>898-122-9643</td>
<td>343 Forbes</td>
</tr>
<tr>
<td>Rohde</td>
<td>3</td>
<td>A</td>
<td>232-343-5555</td>
<td>115 Holder</td>
</tr>
<tr>
<td>Quilici</td>
<td>1</td>
<td>C</td>
<td>343-987-5642</td>
<td>32 McCosh</td>
</tr>
</tbody>
</table>

Sort file on second key:

<table>
<thead>
<tr>
<th>Name</th>
<th>Key</th>
<th>Initial Key</th>
<th>Phone</th>
<th>Initial Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fox</td>
<td>1</td>
<td>A</td>
<td>243-456-9091</td>
<td>101 Brown</td>
</tr>
<tr>
<td>Quilici</td>
<td>1</td>
<td>C</td>
<td>343-987-5642</td>
<td>32 McCosh</td>
</tr>
<tr>
<td>Chen</td>
<td>2</td>
<td>A</td>
<td>884-232-5341</td>
<td>11 Dickinson</td>
</tr>
<tr>
<td>Kanaga</td>
<td>3</td>
<td>B</td>
<td>898-122-9643</td>
<td>343 Forbes</td>
</tr>
<tr>
<td>Andrews</td>
<td>3</td>
<td>A</td>
<td>874-088-1212</td>
<td>121 Whitman</td>
</tr>
<tr>
<td>Furia</td>
<td>3</td>
<td>A</td>
<td>766-093-9873</td>
<td>22 Brown</td>
</tr>
<tr>
<td>Rohde</td>
<td>3</td>
<td>A</td>
<td>232-343-5555</td>
<td>115 Holder</td>
</tr>
<tr>
<td>Battle</td>
<td>4</td>
<td>C</td>
<td>991-878-4944</td>
<td>308 Blair</td>
</tr>
<tr>
<td>Gazsi</td>
<td>4</td>
<td>B</td>
<td>665-303-0266</td>
<td>113 Walker</td>
</tr>
<tr>
<td>Aaron</td>
<td>4</td>
<td>A</td>
<td>664-480-0023</td>
<td>097 Little</td>
</tr>
</tbody>
</table>
Summary

- A priority queue stores a collection of items.
- Each item has a key value.
- Main methods of the Priority Queue ADT:
 - `insert(x)`
 - inserts an item x
 - `removeMin()` (or `removeMax()`)
 - removes and returns the item with smallest (or max) key
- Using an array-based priority queue, each `insert` and `removeMin` can be implemented in O(log n).
- For Heap Sort, we create an array-based max heap in O(n) and each `removeMax` takes O(log n), so the total time is O(n log n).
- Heap Sort is a non-stable, in-place, optimal sorting method.