Priority Queue ADT

- A priority queue stores a collection of elements which have a total order.
- Each element has a key value key(x).
- Main methods of the Priority Queue ADT:
 - `insert(x)` inserts an entry with key k and value x
 - `removeMin()` removes and returns the element with smallest key.

- This is the min-queue. Replace “min” by “max” we obtain the max-queue.

- Additional methods:
 - `min()` returns, but does not remove, an entry with smallest key
 - `size()`
 - `isEmpty()`

- Applications:
 - Standby flyers
 - Auctions
 - Stock market
Total Order Relations

- Keys in a priority queue can be arbitrary objects on which an order is defined.
- Every pair of such keys must be comparable according to a total order.
- Mathematical concept of total order relation \(\leq \):
 - **Comparability** property: either \(x \leq y \) or \(y \leq x \)
 - **Reflexive** property: \(x \leq x \)
 - **Antisymmetric** property: \(x \leq y \) and \(y \leq x \Rightarrow x = y \)
 - **Transitive** property: \(x \leq y \) and \(y \leq z \Rightarrow x \leq z \)

Example

- A sequence of priority queue methods:

<table>
<thead>
<tr>
<th>Method</th>
<th>Return Value</th>
<th>Priority Queue Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert(5,A)</td>
<td></td>
<td>{ (5,A) }</td>
</tr>
<tr>
<td>insert(9,C)</td>
<td>(3,B)</td>
<td>{ (5,A), (9,C) }</td>
</tr>
<tr>
<td>insert(3,B)</td>
<td>(3,B)</td>
<td>{ (3,B), (5,A), (9,C) }</td>
</tr>
<tr>
<td>min()</td>
<td>(5,A)</td>
<td>{ (5,A), (9,C) }</td>
</tr>
<tr>
<td>removeMin()</td>
<td>(7,D)</td>
<td>{ (5,A), (9,C) }</td>
</tr>
<tr>
<td>insert(7,D)</td>
<td>(5,A)</td>
<td>{ (5,A), (7,D), (9,C) }</td>
</tr>
<tr>
<td>removeMin()</td>
<td>(7,D)</td>
<td>{ (5,A), (9,C) }</td>
</tr>
<tr>
<td>removeMin()</td>
<td>(9,C)</td>
<td>{ (9,C) }</td>
</tr>
<tr>
<td>removeMin()</td>
<td>null</td>
<td>{ }</td>
</tr>
<tr>
<td>isEmpty()</td>
<td>true</td>
<td>{ }</td>
</tr>
</tbody>
</table>
Priority Queue Sorting

We can use a priority max-queue to sort a set of comparable elements.

1. Insert the elements one by one with a series of insert operations.
2. Remove the elements in sorted order with a series of removeMax operations.

The running time of this sorting method depends on the priority queue implementation.

Algorithm PQ-Sort(S, C)

\[
\begin{align*}
\text{Input} &: \quad \text{sequence } S, \text{ comparator } C \text{ for the elements of } S \\
\text{Output} &: \quad \text{sequence } S \text{ sorted in increasing order according to } C \\
& \quad P \leftarrow \text{priority queue with comparator } C \\
\text{while } & \neg S.\text{isEmpty}() \quad e \leftarrow S.\text{removeFirst}() \\
& \quad P.\text{insert}(e) \\
\text{while } & \neg P.\text{isEmpty}() \\
& \quad e \leftarrow P.\text{removeMax}() \\
& \quad S.\text{insertFirst}(e)
\end{align*}
\]

Some Definitions

- **Internal Sort**
 - The data to be sorted is all stored in the computer’s main memory.

- **External Sort**
 - Some of the data to be sorted might be stored in some external, slower, device.

- **In Place Sort**
 - The amount of extra space required to sort the data is $o(n)$, where n is the input size.
Sequence-based Priority Queue

- Implementation with an unsorted list
 - Performance:
 - \textit{insert} takes $O(1)$ time since we can insert the item at the beginning or end of the sequence.
 - \textit{removeMax} takes $O(n)$ time since we have to traverse the entire sequence to find the smallest key.

- Implementation with a sorted list
 - Performance:
 - \textit{insert} takes $O(n)$ time since we have to find the place where to insert the item.
 - \textit{removeMax} takes $O(1)$ time, since the smallest key is at the beginning.

Selection-Sort, Insertion-Sort

- Selection-sort is the variation of PQ-sort where the priority queue is implemented with an unsorted sequence.
 - If an array is used, it can be implemented as in-place selection sort.
- Insertion-sort is the variation of PQ-sort where the priority queue is implemented with a sorted sequence.
 - If an array is used, it can be implemented as in-place insertion sort.
Selection-Sort Example

<table>
<thead>
<tr>
<th>Input: (7,4,8,2,5,3,9)</th>
<th>Priority Queue P</th>
<th>Sorted Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>removeMax():</td>
<td>(7,4,8,2,5,3)</td>
<td>(9)</td>
</tr>
<tr>
<td>removeMax():</td>
<td>(7,4,2,5,3)</td>
<td>(8,9)</td>
</tr>
<tr>
<td>removeMax():</td>
<td>(4,2,5,3)</td>
<td>(7,8,9)</td>
</tr>
<tr>
<td>removeMax():</td>
<td>(4,2,3)</td>
<td>(5,7,8,9)</td>
</tr>
<tr>
<td>removeMax():</td>
<td>(2,3)</td>
<td>(4,5,7,8,9)</td>
</tr>
<tr>
<td>removeMax():</td>
<td>(2)</td>
<td>(3,4,5,7,8,9)</td>
</tr>
<tr>
<td>removeMax():</td>
<td>()</td>
<td>(2,3,4,5,7,8,9)</td>
</tr>
</tbody>
</table>

Insertion-Sort Example

<table>
<thead>
<tr>
<th>Input: (7,4,8,2,5,3,9)</th>
<th>Sequence S</th>
<th>Priority queue P</th>
</tr>
</thead>
<tbody>
<tr>
<td>insert(7):</td>
<td>(4,8,2,5,3,9)</td>
<td>(7)</td>
</tr>
<tr>
<td>insert(4):</td>
<td>(8,2,5,3,9)</td>
<td>(4,7)</td>
</tr>
<tr>
<td>insert(8):</td>
<td>(2,5,3,9)</td>
<td>(4,7,8)</td>
</tr>
<tr>
<td>insert(2):</td>
<td>(5,3,9)</td>
<td>(2,4,7,8)</td>
</tr>
<tr>
<td>insert(5):</td>
<td>(3,9)</td>
<td>(2,4,5,7,8)</td>
</tr>
<tr>
<td>insert(3):</td>
<td>(9)</td>
<td>(2,3,4,5,7,8)</td>
</tr>
<tr>
<td>insert(9):</td>
<td>()</td>
<td>(2,3,4,5,7,8,9)</td>
</tr>
</tbody>
</table>
Balanced Search Tree Based Priority Queue

- Both insert and removeMax can be implemented using $O(\log n)$ time.
- Thus, PQ-sort can run in $O(n \log n)$.
- Can we have an in-place PQ-sort whose complexity is in $O(n \log n)$?
 - Yes, use heaps for PQ.

What is a heap?

- A (max) heap is a binary tree storing keys at its internal nodes and satisfying the following properties:
 - **Heap-Order**: for every node v other than the root, $key(v) \leq key(parent(v))$
 - **Complete Binary Tree**: let h be the height of the heap
 - for $i = 0, \ldots, h - 2$, there are 2^i nodes of depth i
 - at depth $h-1$, the nodes are listed from left to right without gaps.

- The last node of a heap is the rightmost node of depth $h - 1$.

Last node
Height of a Heap

- **Theorem:** A heap storing n keys has height $O(\log n)$
 - Proof: (we apply the complete binary tree property)
 - Let h be the height of a heap storing n keys
 - Since there are 2^i keys at depth $i = 0, \ldots, h - 1$ and at least one key at depth h, we have $n \geq 1 + 2 + 4 + \ldots + 2^{h-1} + 1$
 - Thus, $n \geq 2^h$, i.e., $h \leq \log n$.

```
<table>
<thead>
<tr>
<th>depth</th>
<th>keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>$h-1$</td>
<td>$2^{h-1}$</td>
</tr>
<tr>
<td>$h$</td>
<td>1</td>
</tr>
</tbody>
</table>
```

Heaps and Priority Queues

- We can use a heap to implement a priority queue
- We store a (key, element) item at each node
- We keep track of the position of the last node
- For simplicity, we will show only the keys in the pictures

A min-heap:

```
(5, Pat) ← (9, Jeff) ← (7, Anna) ← (2, Sue) ← (6, Mark)
```
Insert into a Heap

- Method insert of the priority queue ADT corresponds to the insertion of a key k to the heap.
- The insertion algorithm consists of three steps:
 - Find the insertion node z (the new last node).
 - Store k at z and expand z into an internal node.
 - Restore the heap-order property by up-heap bubble (discussed next).

Up-Heap Bubbling

- After the insertion of a new key k, the heap-order property may be violated.
- Algorithm up-heap bubble restores the heap-order property by swapping k along an upward path from the insertion node.
- Sift-Up terminates when the key k reaches the root or a node whose parent has a key smaller than or equal to k.
- Since a heap has height $O(\log n)$, up-heap bubble runs in $O(\log n)$ time.
removeMax from a Heap

- Method removeMax of the priority queue ADT corresponds to the removal of the root key from the heap.
- The removal algorithm consists of three steps:
 - Replace the root key with the key of the last node \(w \).
 - Compress \(w \) and its children into a leaf.
 - Restore the heap-order property by down-heap bubble (discussed next).

Down-heap bubbling (Heapify)

- After replacing the root key with the key \(k \) of the last node, the heap-order property may be violated.
- Algorithm down-heap bubble (or heapify) restores the heap-order property by swapping key \(k \) along a downward path from the root.
- Down-heap terminates when key \(k \) reaches a leaf or a node whose children have keys less than or equal to \(k \).
- Since a heap has height \(O(\log n) \), down-heap bubble runs in \(O(\log n) \) time.
Heap-Sort

- Consider a priority queue with \(n \) items implemented by means of a max-heap
 - the additional space used is \(O(\log n) \)
 - methods `insert` and `removeMax` take \(O(\log n) \) time.

- Using a heap-based priority queue, we can sort a sequence of \(n \) elements in \(O(n \log n) \) time.

- It can be implemented in-place.

- The resulting algorithm is called heap-sort.

- Heap-sort is much faster than quadratic sorting algorithms, such as insertion-sort and selection-sort, when \(n \) is very large.

Array-based Heap Implementation

- We can represent a heap with \(n \) keys by means of an array of length \(n \).

- For the node at index \(i \)
 - the left child is at index \(2i + 1 \)
 - the right child is at index \(2i + 2 \)

- Links between nodes are not explicitly stored.

- The (first portion of) input array \(A \) is used as heap.

- In-place (no additional array is needed) heap-sort:
 - For \(k = 1 \) to \(n-1 \)
 - \(A.insert(A[k]) \);
 - For \(k = n-1 \) downto 1
 - \(A[k] = A.removeMax() \);

- Cost: \(O(n \log n) \)
We can construct a heap storing \(n \) given keys in using a bottom-up construction with \(\log n \) phases.

In phase \(i \), pairs of heaps with \(2^i - 1 \) keys are merged into heaps with \(2^{i+1} - 1 \) keys.

Merging Two Heaps

- We are given two two heaps and a key \(k \).
- We create a new heap with the root node storing \(k \) and with the two heaps as subtrees.
- We perform downheap to restore the heap-order property.
Example

A = [10, 7, 8, 25, 5, 11, 27, 16, 15, 4, 12, 6, 7, 23, 20]

Example (contd.)
Example (contd.)

Example (end)
Building a Heap

- Convert an array $A[1 \ldots n]$ into a max-heap ($n = \text{length}[A]$)
- The elements in the subarray $A[\lfloor n/2 \rfloor + 1 \ldots n]$ are leaves
- Apply MaxHeapify on elements between 1 and $\lfloor n/2 \rfloor$

Alg. BuildMaxHeap(A)

1. $n = \text{length}[A]$
2. for $i \leftarrow \lfloor n/2 \rfloor$ downto 1
3. do MaxHeapify(A, i, n)

Example:

```
A:  4  1  3  2  16  9  10  14  8  7
```
Maintaining the Heap Property

- **Assumptions:**
 - Left and Right subtrees of \(i\) are max-heaps
 - \(A[i]\) may be smaller than its children

Alg: MaxHeapify\((A, i, n)\) {
 1. \(l \leftarrow \text{Left}(i);\) // \(\text{Left}(i) = 2i+1\)
 2. \(r \leftarrow \text{Right}(i);\) // \(\text{Right}(i) = 2i+2\)
 3. \(\text{max} \leftarrow i;\)
 4. if \((l < n \&\& A[l] > A[\text{max}])\) \(\text{max} \leftarrow l;\)
 5. if \((r < n \&\& A[r] > A[\text{max}])\) \(\text{max} \leftarrow r;\)
 6. if \((\text{max} \neq i)\) {
 7. exchange \(A[i] \leftrightarrow A[\text{max}];\)
 8. MaxHeapify\((A, \text{max}, n)\);
 9. }
}

Running Time of BUILD MAX HEAP

Alg: BuildMaxHeap\((A)\)

1. \(n = \text{length}[A]\)
2. for \(i \leftarrow \lfloor n/2 \rfloor\) down to 1
 3. do MaxHeapify\((A, i, n)\) \(O(lgn)\) \(O(n)\)

\(\Rightarrow\) Running time: \(O(n lgn)\)

- This is not an asymptotically tight upper bound
Analysis

- We visualize the worst-case time of a heapify (or sift-down) with a given path that goes first right and then repeatedly goes left until the bottom of the heap (this path may differ from the actual heapify path).
- Since each edge is traversed by at most once by these paths, the total length of these paths is $O(n)$.
- Thus, bottom-up heap construction runs in $O(n)$ time.
- Bottom-up heap construction is faster than n successive insertions and speeds up the first phase of heap-sort.

Running Time of BUILD MAX HEAP

- MaxHeapify takes $O(h) \Rightarrow$ the cost of MaxHeapify on a node i is proportional to the height of the node i in the tree.

$$T(n) = \sum_{i=0}^{h} n_i h_i = \sum_{i=0}^{h} 2^i (h - i) = O(n)$$

<table>
<thead>
<tr>
<th>Height</th>
<th>Level</th>
<th>No. of nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$h_0 = 3 \lfloor \log_2 n \rfloor$</td>
<td>$i = 0$</td>
<td>2^0</td>
</tr>
<tr>
<td>$h_1 = 2$</td>
<td>$i = 1$</td>
<td>2^1</td>
</tr>
<tr>
<td>$h_2 = 1$</td>
<td>$i = 2$</td>
<td>2^2</td>
</tr>
<tr>
<td>$h_3 = 0$</td>
<td>$i = 3 \lfloor \log_2 n \rfloor$</td>
<td>2^3</td>
</tr>
<tr>
<td>$h_i = h - i$</td>
<td>height of the heap rooted at level i</td>
<td></td>
</tr>
<tr>
<td>$n_i = 2^i$</td>
<td>number of nodes at level i</td>
<td></td>
</tr>
</tbody>
</table>
Running Time of BUILD MAX HEAP

\[T(n) = \sum_{i=0}^{h} n_i, h_i \]

Cost of MaxHeapify at level \(i \) * number of nodes at that level

\[= \sum_{i=0}^{h} 2^i (h - i) \]

Replace the values of \(n_i \) and \(h_i \) computed before

\[= \sum_{i=0}^{h} \frac{h - i}{2^{h-i}} 2^h \]

Multiply by \(2^h \) both at the nominator and denominator and write \(2^i \) as \(\frac{1}{2^{h-i}} \)

\[= 2^h \sum_{k=0}^{h} \frac{k}{2^k} \]

Change variables: \(k = h - i \)

\[\leq n \sum_{k=0}^{\infty} \frac{k}{2^k} \]

The sum above is smaller than the sum of all elements to \(\infty \) and \(h = \log(n) \)

\[= O(n) \]

The sum above is smaller than 2

Running time of BuildMaxHeap: \(T(n) = O(n) \)

HeapSort(A)

- Convert an array \(A[0 \ldots n-1] \) into a max-heap
 - The elements in the subarray \(A[\lceil n/2 \rceil \ldots n-1] \) are leaves.
 - Apply MaxHeapify on elements between 0 and \(\lceil n/2 \rceil - 1 \)
- Repeatedly swap the max heap element with the last unsorted element and call MaxHeapify to maintain the heap property.

Alg: HeapSort(A) {
 1. \(n = A.length; \)
 2. \(\text{for } i \leftarrow \lceil n/2 \rceil \text{ downto } 0 \)
 3. \(\text{MaxHeapify}(A, i, n); \)
 4. \(\text{for } i \leftarrow n - 1 \text{ downto } 1 \{ \text{// } A[0..i] \text{ is a max heap} \)
 5. \(\text{exchange } A[i] \leftrightarrow A[0]; \)
 6. \(\text{MaxHeapify}(A, 0, i); \text{// } A[i..n-1] \text{ is sorted with max } (n - i) \)
 7. \} \text{// elements of the original array.}
Example: \(A = [7, 4, 3, 1, 2] \)

MaxHeapify(A, 1, 4)
MaxHeapify(A, 1, 3)
MaxHeapify(A, 1, 2)
MaxHeapify(A, 1, 1)

Stability

A **STABLE** sort preserves relative order of records with equal keys

Sorted on first key:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Phone</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fox</td>
<td>1</td>
<td>242-456-5931</td>
<td>101 Brown</td>
</tr>
<tr>
<td>Quinn</td>
<td>1</td>
<td>543-987-6542</td>
<td>92 McTush</td>
</tr>
<tr>
<td>Chen</td>
<td>2</td>
<td>684-792-5431</td>
<td>11 Dickinson</td>
</tr>
<tr>
<td>Esken</td>
<td>3</td>
<td>690-122-2043</td>
<td>242 Parker</td>
</tr>
<tr>
<td>Andrew</td>
<td>3</td>
<td>874-287-2212</td>
<td>123 Whitman</td>
</tr>
<tr>
<td>Tennis</td>
<td>3</td>
<td>766-210-3793</td>
<td>11 Brown</td>
</tr>
<tr>
<td>Johnson</td>
<td>3</td>
<td>222-141-5515</td>
<td>115 Holder</td>
</tr>
<tr>
<td>Blake</td>
<td>4</td>
<td>932-978-2444</td>
<td>808 Blair</td>
</tr>
<tr>
<td>Davis</td>
<td>4</td>
<td>665-103-0266</td>
<td>113 Walker</td>
</tr>
<tr>
<td>Aaron</td>
<td>4</td>
<td>404-406-0021</td>
<td>697 Little</td>
</tr>
</tbody>
</table>

Sort file on second key:

Records with key value 3 are not in order on first key!!
Summary

- A priority queue stores a collection of items
- Each item has a key value.
- Main methods of the Priority Queue ADT
 - `insert(x)`
 - inserts an item x
 - `removeMin()` (or `removeMax()`)
 - removes and returns the item with smallest (or max) key
- Using an array-based priority queue, each insert and removeMin can be implemented in $O(\log n)$.
- For Heap Sort, we create an array-based max heap in $O(n)$ and each removeMax takes $O(\log n)$, so the total time is $O(n \log n)$.
- Heap Sort is a non-stable, in-place, optimal sorting method.