Ch04 Balanced Binary Search Trees

Why care about advanced implementations?

Same entries, different insertion sequence:

→ Not good! Would like to keep tree balanced.
Balanced binary tree

- The disadvantage of a binary search tree is that its height can be as large as N-1
- This means that the time needed to perform insertion and deletion and many other operations can be O(N) in the worst case
- We want a tree with small height
- A binary tree with N node has height at least $\Theta(\log N)$
- Thus, our goal is to keep the height of a binary search tree O(log N)
- Such trees are called balanced binary search trees. Examples are AVL tree, and red-black tree.

Approaches to balancing trees

- Don't balance
 - May end up with some nodes very deep
- Strict balance
 - The tree must always be balanced perfectly
- Pretty good balance
 - Only allow a little out of balance
- Adjust on access
 - Self-adjusting
Balancing Binary Search Trees

- Many algorithms exist for keeping binary search trees balanced
 - Adelson-Velskii and Landis (AVL) trees (height-balanced trees)
 - Splay trees and other self-adjusting trees
 - B-trees and other multiway search trees

Perfect Balance

- Want a complete tree after every operation
 - tree is full except possibly in the lower right
- This is expensive
 - For example, insert 2 in the tree on the left and then rebuild as a complete tree
AVL - Good but not Perfect Balance

- AVL trees are height-balanced binary search trees
- **Balance factor** of a node
 - height(left subtree) - height(right subtree)
- An AVL tree has balance factor calculated at every node
 - For every node, heights of left and right subtree can differ by no more than 1
 - Store current heights in each node

Height of an AVL Tree

- \(N(h) = \text{minimum number of nodes in an AVL tree of height } h. \)
- **Basis**
 - \(N(0) = 1, N(1) = 2 \)
- **Induction**
 - \(N(h) = N(h-1) + N(h-2) + 1 \)
- **Solution** (recall Fibonacci analysis)
 - \(N(h) \geq \phi^h (\phi \approx 1.618) \)
Height of an AVL Tree

- \(N(h) > \phi^h \) (\(\phi \approx 1.62 \))
- Suppose we have \(n \) nodes in an AVL tree of height \(h \).
 - \(n \geq N(h) \) (because \(N(h) \) was the minimum)
 - \(n > \phi^h \) hence \(\log_\phi n > h \) (relatively well balanced tree!!)
 - \(h < 1.44 \log_2 n \) (i.e., Find takes \(O(\log n) \))

Node Heights

Tree A (AVL)
- Height = 2
- BF = 1 - 0 = 1

Tree B (AVL)
- Height = 2
- BF = 1 - 0 = 1

height of node = \(h \)
balance factor = \(h_{\text{left}} - h_{\text{right}} \)
empty height = -1
Node Heights after Insert 7

Node Heights after Insert 7

Tree A (AVL) Tree B (not AVL)

<table>
<thead>
<tr>
<th>4</th>
<th>6</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

balance factor 1-(-1) = 2

height of node = h
balance factor = h_{left} - h_{right}
empty height = -1

Insert and Rotation in AVL Trees

- Insert operation may cause balance factor to become 2 or -2 for some node
 - only nodes on the path from insertion point to root node have possibly changed in height
 - So after the Insert, go back up to the root node by node, updating heights
 - If a new balance factor (the difference h_{left} - h_{right}) is 2 or -2, adjust tree by rotation around the node
Let the node that needs rebalancing be α.

There are 4 cases:

Outside Cases (require single rotation):
1. Insertion into left subtree of left child of α.
2. Insertion into right subtree of right child of α.

Inside Cases (require double rotation):
3. Insertion into right subtree of left child of α.
4. Insertion into left subtree of right child of α.

The rebalancing is performed through four separate rotation algorithms.
Consider a valid AVL subtree.

AVL Insertion: Outside Case

Inserting into X destroys the AVL property at node j.
AVL Insertion: Outside Case

Do a “rotation to right”

Single right rotation

Do a “right rotation”
Outside Case Completed

“Right rotation” done!
("Left rotation" is mirror symmetric)

AVL Insertion: Inside Case

Consider a valid AVL subtree

AVL property has been restored!
Inserting into Y destroys the AVL property at node j.

AVL Insertion: Inside Case

Does “right rotation” restore balance?

“One rotation” does not restore balance… now k is out of balance.
AVL Insertion: Inside Case

Consider the structure of subtree Y...

Y = node i and subtrees V and W
AVL Insertion: Inside Case

We will do a left-right "double rotation" . . .

Double rotation: first rotation

left rotation complete
Double rotation: second rotation

Now do a right rotation

Double rotation: second rotation

right rotation complete

Balance has been restored
Implementation

Once you have performed a rotation (single or double) you won’t need to go back up the tree.

Class BinaryNode

KeyType: Key
int: Height
BinaryNode: LeftChild
BinaryNode: RightChild

Constructor(KeyType: key)
Key = key
Height = 0
End Constructor
End Class

rotateToRight(G)

Relative to G, X is at left-left positions. rotateToRight(G) will exchange of roles between G and P, so P becomes G's parent.
After rotateToRight(G)

rotateToLeft(G) will handle the case when X is at right right position relative to G.

Java-like Pseudo-Code

rotateToRight(BinaryNode: x) {
 BinaryNode y = x.LeftChild;
 x.LeftChild = y.RightChild;
 y.RightChild = x;
 return y;
}
Java-like Pseudo-Code

rotateToLeft(BinaryNode: x) {
 BinaryNode y = x.rightChild;
 x.rightChild = y.leftChild;
 y.leftChild = x;
 return y;
}

Double Rotation

- Implement Double Rotation in two lines.

DoubleRotateToLeft(n : binaryNode) {
 rotateToRight(n.rightChild);
 rotateToLeft(n);
}

DoubleRotateToRight(n : binaryNode) {
 rotateToLeft(n.leftChild);
 rotateToRight(n);
}

Rotate with right child
Insertion in AVL Trees

- Insert at the leaf (as for all BST)
 - only nodes on the path from insertion point to root node have possibly changed in height
 - So after the Insert, go back up to the root node by node, updating heights
 - If a new balance factor (the difference $h_{left} - h_{right}$) is 2 or -2, adjust tree by \textit{rotation} around the node

Insert in ordinary BST

\begin{verbatim}
Insert(T : binaryNode, x : element) {
 if T = null then
 T \leftarrow \text{new tree}; T.data \leftarrow x;
 else
 case
 T.data = x : ; //Duplicate
 T.data > x : T.leftChild \leftarrow
 Insert(T.leftChild, x);
 T.data < x : T.rightChild \leftarrow
 Insert(T.rightChild, x);
 endcase
 return T;
}
\end{verbatim}
Insert in AVL trees

Insert(T : binaryNode, x : element) : {
 if T = null then
 {T ← new node; T.data ← x; height ← 0;}
 else case
 T.data = x : ; //Duplicate do nothing
 T.data > x : T.leftChild ← Insert(T.leftChild, x);
 if ((height(T.leftChild) - height(T.rightChild)) = 2) then
 if (T.leftChild.data > x) then //outside case
 T = RotateToRight (T);
 else //inside case
 T = DoubleRotateToRightt (T);
 T.data < x : T.righChild ← Insert(T.rightChild, x);
 // code similar to the left case
 ...
 Endcase
 T.height ← max(height(T.left),height(T.right)) +1;
 return T;
}
Example of Insertions in an AVL Tree

1. Insert 20
2. Insert 30
3. Insert 10
4. Insert 5
5. Insert 35
6. Insert 40
7. Now insert 45

Single rotation (outside case)

1. Insert 45
2. Insert 34
Double rotation (inside case)

AVL Tree Deletion

- Similar but more complex than insertion
 - Rotations and double rotations needed to rebalance
 - Imbalance may propagate upward so that many rotations may be needed.
Deletion

- Removal begins as in a binary search tree, which means the node removed will become an empty external node. Its parent may have an imbalance.

- Example:

```
before deletion of 32
```

```
44
17
 32
50
 48
54
88
```

```
after deletion
```

```
44
17
 62
50
 50
78
88
```

Rebalancing after a Removal

- Let z be the first unbalanced node encountered while travelling up the tree from w. Also, let y be the child of z with the larger height, and let x be the child of y with the larger height.
- We perform a rotateToLeft to restore balance at z.
- As this restructuring may upset the balance of another node higher in the tree, we must continue checking for balance until the root of T is reached.
Pseudo-code

Removal

Algorithm removeAVL(k, T):
 Input: A key, k, and an AVL tree, T
 Output: An update of T to now have an item (k, v) removed
 v ← IterativeTreeSearch(k, T)
 if v is an external node then
 return “There is no item with key k in T”
 if v has no external-node child then
 Let u be the node in T with key nearest to k
 Move u’s key-value pair to v
 v ← u
 Let w be v’s smallest-height child
 Remove w and v from T, replacing v with w’s sibling, z
 rebalanceAVL(z, T)

AVL Tree Example:

• Now remove 53
AVL Tree Example:

- Now remove 53, unbalanced

AVL Tree Example:

- Balanced! Remove 11
AVL Tree Example:
• Remove 11, replace it with the largest in its left branch

AVL Tree Example:
• Remove 8, unbalanced
AVL Tree Example:
• Remove 8, unbalanced

AVL Tree Example:
• Balanced!!
In Class Exercises

- Build an AVL tree with the following values:
 15, 20, 24, 10, 13, 7, 30, 36, 25
15, 20, 24, 10, 13, 7, 30, 36, 25
Remove 24 and 20 from the AVL tree.

AVL Tree Performance

- AVL tree storing n items
 - The data structure uses $O(n)$ space
 - A single restructuring takes $O(1)$ time
 - using a linked-structure binary tree
 - Searching takes $O(\log n)$ time
 - height of tree is $O(\log n)$, no restructures needed
 - Insertion takes $O(\log n)$ time
 - initial find is $O(\log n)$
 - restructuring up the tree, maintaining heights is $O(\log n)$
 - Removal takes $O(\log n)$ time
 - initial find is $O(\log n)$
 - restructuring up the tree, maintaining heights is $O(\log n)$
Pros and Cons of AVL Trees

Arguments for AVL trees:
1. Search is $O(\log N)$ since AVL trees are always balanced.
2. Insertion and deletions are also $O(\log n)$
3. The height balancing adds no more than a constant factor to the speed of insertion.

Arguments against using AVL trees:
1. Difficult to program & debug; more space for balance factor.
2. Asymptotically faster but rebalancing costs time.
3. Most large searches are done in database systems on disk and use other structures (e.g. B-trees).
4. May be OK to have $O(N)$ for a single operation if total run time for many consecutive operations is fast (e.g. Splay trees).

Red-Black Tree

- A ref-black tree is a binary search such that each node has a color of either red or black.
- The root is black.
- External nodes are black.
- Every path from a node to a leaf contains the same number of black nodes.
- If a node is red then its parent must be black.

Class BinaryNode

```java
KeyType: Key
Boolean: isRed
BinaryNode: LeftChild
BinaryNode: RightChild
```

Constructor(KeyType: key)

```java
Key = key
isRed = true
End Constructor
```

End Class
Example

The root is black.
The parent of any red node must be black.

Theorem: Any red-black tree with root x, has $n \geq 2^{h/2} - 1$ nodes, where h is the height of tree rooted by x.

Proof: We repeatedly replace the subtree rooted by a red node by one of its children.

Let the height of the new tree be h', then $h' \geq h/2$, because the number of red nodes in any path is no more than the number of black nodes.

The new tree is a perfect binary tree, because it has the same of nodes from the root to any leaf. It must have $2^{h'} - 1$ nodes.

So $h \leq 2\log(n+1)$.
Maintain the Red Black Properties in a Tree

- **Insertions**
 - Must maintain rules of Red Black Tree.
 - New Node always added at leaf
 - can't be black or we will violate rule of the same # of blacks along any path
 - therefore the new leaf must be red
 - If parent is black, done (trivial case)
 - If parent red, things get interesting because a red leaf with a red parent violates no double red rule.

Algorithm: Insertion

A red-black tree is a particular binary search tree, so create a new node as red and insert it as in normal search tree.

Violation!

What property may be violated? The parent of a red node must be black.

Solution: (1) Rotate; (2) Switch colors.
Example of Inserting Sorted Numbers

- 1 2 3 4 5 6 7 8 9 10

Insert 1. A leaf is red. Realize it is root so recolor to black.

Insert 2. Make 2 red. Parent is black so done.
Insert 3

Insert 3. Parent is red. Parent's sibling is black (null) 3 is outside relative to grandparent. Rotate parent and grandparent

Insert 4

When adding 4 parent is red.

4 has a red uncle (1). So switch the great parent (2)'s color with parent and uncle. 2 is set to black if it’s the root.
Insert 5

5's parent is red. Parent's sibling is black (null). 5 is outside relative to grandparent (3) so rotate parent and grandparent then recolor.

Finish insert of 5
Insert 6

6 has a red uncle (3). So switch the grandparent (4)’s color with parent (5) and uncle (3).

Finishing insert of 6

4’s parent is black so done.
Insert 7

7's parent is red. Parent's sibling is black (null). 7 is outside relative to grandparent (5) so rotate parent and grandparent then recolor

Finish insert of 7
8’s parent is red and its uncle (5) is also red. Switching the color of 6 with 5 and 7 creates a problem because 6’s parent, 4, is also red. Must handle the red-red violation at 6.

6’s uncle (1) is black. So rotate and recolor.

8’s parent is red and its uncle (5) is also red. Switching the color of 6 with 5 and 7 creates a problem because 6’s parent, 4, is also red. Must handle the red-red violation at 6.
Finish inserting 8

Insert 9
After rotations and recoloring

10 has a red uncle. Grandparent (8) switch colors with parent (9) and uncle (7).
8 has a red uncle (2). Grandparent (4) switch colors with parent (2) and uncle (6). 4 is recolored black as root.

Finishing Insert 10

4 is recolored black as root.
Algorithm: Insertion

We have detected a need for balance when X is red and its parent, too.

- If X has a red uncle: colour the parent and uncle black, and grandparent red. Then replace X by grandparent to see if new X’s parent is red.

- If X is a left child and has a black uncle: colour the parent black and the grandparent red, then rightRotate(X.parent.parent)
Algorithm: Insertion

We have detected a need for balance when X is red and his parent too.

- If X has a red uncle: colour the parent and uncle black, and grandparent red. Then replace X by grandparent to see if X’s parent is red.
- If X is a left child and has a black uncle, colour the parent black and the grandparent red, then rotateRight(X.parent.parent)
Double Rotation

- What if X is at left right relative to G?
 - a single rotation will not work
- Must perform a double rotation
 - rotate X and P
 - rotate X and G

After Double Rotation

Double rotation is also needed when X is at right left position relative to G.
Properties of Red Black Trees

- If a Red node has any children, it must have two children and they must be black. (Why?)
- If a black node has only one child that child must be a Red leaf. (Why?)
- Due to the rules there are limits on how unbalanced a Red Black tree may become.

Splay Trees
Motivation for Splay Trees

Problems with AVL Trees
- extra storage/complexity for height fields
- ugly delete code

Solution: splay trees
- blind adjusting version of AVL trees
- amortized time for all operations is $O(\log n)$
- worst case time is $O(n)$
- insert/find always rotates node to the root!

Splay Tree Idea

You’re forced to make a really deep access:

Since you’re down there anyway, fix up a lot of deep nodes!
Splaying Cases

Node n being accessed is:
- Root
- Child of root
- Has both parent (p) and grandparent (g)
 - Zig-zig pattern: $g \rightarrow p \rightarrow n$ is left-left or right-right (outside nodes)
 - Zig-zag pattern: $g \rightarrow p \rightarrow n$ is left-right or right-left (inside nodes)

Access root:
Do nothing (that was easy!)
Access child of root:
Zig (AVL single rotation)

Access (LR, RL) grandchild:
Zig-Zag (AVL double rotation)
Access (LL, RR) grandchild:
Zig-Zig

Rotate top-down – why?

Splaying Example:
Find(6)
... still splaying ...

... 6 splayed out!
Splay it Again, Sam!

Find (4)

... 4 splayed out!
Splay Tree Definition

- A **splay tree** is a binary search tree where a node is splayed after it is accessed (for a search or update)
 - deepest internal node accessed is splayed
 - splaying costs $O(h)$, where h is height of the tree – which is still $O(n)$ worst-case
 - $O(h)$ rotations, each of which is $O(1)$

Splay Trees do Rotations after Every Operation (Even Search)

- new operation: **splay**
 - splaying moves a node to the root using rotations
 - right rotation
 - makes the left child x of a node y into y's parent; y becomes the right child of x
 - left rotation
 - makes the right child y of a node x into x's parent; x becomes the left child of y
Visualizing the Splaying Cases

Splaying:

- "x is a left-left grandchild" means x is a left child of its parent, which itself a left child of its parent
- p is x's parent, g is p's parent

start with node x

is x the root?

no

is x a child of the root?

no

is x the left child of the root?

yes zig

right-rotate about the root

no zig

left-rotate about the root

yes

is x a left-left grandchild?

no

is x a right-right grandchild?

no

is x a right-left grandchild?

yes zig-zag

left-rotate about p, right-rotate about g

yes zig-zig

right-rotate about g, right-rotate about p

yes zig-zig

left-rotate about g, left-rotate about p

yes zig-zig

left-rotate about p, left-rotate about g

yes zig-zig

right-rotate about p, right-rotate about g

stop
Splay Tree Operations

- Which nodes are splayed after each operation?

<table>
<thead>
<tr>
<th>method</th>
<th>splay node</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search for k</td>
<td>if key found, use that node</td>
</tr>
<tr>
<td></td>
<td>if key not found, use parent of ending external node</td>
</tr>
<tr>
<td>Insert (k,v)</td>
<td>use the new node containing the entry inserted</td>
</tr>
<tr>
<td>Remove item</td>
<td>use the predecessor of the node to be removed</td>
</tr>
<tr>
<td>with key k</td>
<td></td>
</tr>
</tbody>
</table>

Why Splaying Helps

- If a node n on the access path is at depth d before the splay, it’s at about depth $d/2$ after the splay
 - Exceptions are the root, the child of the root, and the node splayed

- Overall, nodes which are below nodes on the access path tend to move closer to the root

- Splaying gets amortized $O(\log n)$ performance. (Maybe not now, but soon, and for the rest of the operations.)
Splay Operations: Find

- Find the node in normal BST manner
- Splay the node to the root

Splay Operations: Insert

- Ideas?
- Can we just do BST insert?
Digression: Splitting

- Split(T, x) creates two BSTs L and R:
 - all elements of T are in either L or R (T = L ∪ R)
 - all elements in L are ≤ x
 - all elements in R are ≥ x
 - L and R share no elements (L ∩ R = ∅)

Splitting in Splay Trees

- How can we split?
 - We have the splay operation.
 - We can find x or the parent of where x should be.
 - We can splay it to the root.
 - Now, what’s true about the left subtree of the root?
 - And the right?
void insert(Node root, Object x) {
 <left, right> = split(root, x);
 root = new Node(x, left, right);
}
Splay Operations: Delete

Now what?

Join

Join(L, R): given two trees such that L < R, merge them

Splay on the maximum element in L, then attach R
Delete Completed

\[
\text{find}(x) \quad \xrightarrow{\text{delete } x} \quad \text{Join}(L,R) \quad \xrightarrow{T - x}
\]

Insert Example

\[
\text{Insert}(5) \quad \xrightarrow{\text{split}(5)}
\]

Insert(5)
Delete Example

Splay Tree Summary

Can be shown that any M consecutive operations starting from an empty tree take at most O(M \log(N))

\[\Rightarrow \text{All splay tree operations run in amortized } O(\log n) \text{ time} \]

O(N) operations can occur, but splaying makes them infrequent

Implements most-recently used (MRU) logic
- Splay tree structure is self-tuning
Splay Tree Summary (cont.)

Splaying can be done top-down; better because:
- only one pass
- no recursion or parent pointers necessary

There are alternatives to split/insert and join/delete

Splay trees are very effective search trees
- relatively simple: no extra fields required
- excellent locality properties:
 - frequently accessed keys are cheap to find (near top of tree)
 - infrequently accessed keys stay out of the way (near bottom of tree)

Amortized Analysis of Splay Trees

- Running time of each operation is proportional to time for splaying.
- Define rank(v) as the logarithm (base 2) of the number of nodes in subtree rooted at v:
 - rank(v) = log n(v) if null for external nodes
 - rank(v) = log (2n(v)+1) if empty nodes for externals.
- Costs: zig = $1, zig-zig = $2, zig-zag = $2.
- Thus, cost for splaying a node at depth d = $d.
- Imagine that we store rank(v) cyber-dollars at each node v of the splay tree (just for the sake of analysis).
- The total counter values is rank(T) = sum of rank(v) for any node v in T.