
Binary Search Trees 9/12/2019

1

1

Ch.03 Binary Search Trees

Presentation for use with the textbook Algorithm Design and 
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015
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Binary Search
Binary search can perform nearest neighbor queries on an 
ordered map that is implemented with an array, sorted by key
 similar to the high-low children’s game
 at each step, the number of candidate items is halved
 terminates after O(log n) steps

Example: find(7)
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Search Tables
A search table is an ordered map implemented by means of a 
sorted sequence
 We store the items in an array-based sequence, sorted by key
 We use an external comparator for the keys

Performance:
 Searches take O(log n) time, using binary search
 Inserting a new item takes O(n) time, since in the worst case we 

have to shift n – 1 items to make room for the new item
 Removing an item takes O(n) time, since in the worst case we have 

to shift n items to compact the items after the removal
The lookup table is effective only for ordered maps of small size 
or for maps on which searches are the most common 
operations, while insertions and removals are rarely performed.
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Binary Search Trees
A binary search tree is a 
binary tree storing keys (or 
key-value entries) at its 
internal nodes and satisfying 
the following property:
 Let u, v, and w be three 

nodes such that u is in 
the left subtree of v and 
w is in the right subtree
of v. We have 
key(u)  key(v)  key(w)

An inorder traversal of a 
binary search trees visits the 
keys in non-decreasing order
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Search
To search for a key k, we 
trace a downward path 
starting at the root
The next node visited 
depends on the comparison 
of k with the key of the 
current node
If we reach an external 
node, the key is not found
Example: get(4):
 Call TreeSearch(4,root)

The algorithms for nearest 
neighbor queries 
(predecessor and 
successor) are similar.

Algorithm TreeSearch(k, v)
if isNull (v)

return v     // v is null or empty node
if k  key(v)

return TreeSearch(k, leftChild(v))
else if k  key(v)

return v     // key(v) = k.
else // k  key(v) 

return TreeSearch(k, rightChild(v))
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Minimum & Maximum
The minimum node is null 
if the root is null; 
otherwise, it is the leftmost 
node.
The maximum node is null 
if the root is null; 
otherwise, it is the 
rightmost node.

Algorithm TreeMinimum(v)
if isNull (v)

return v     // v is null or empty node
if isNull(leftChild(v))

return v
return TreeMinimum(leftChild(v))
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Insertion
To perform operation 
insert(k, o), we search for 
key k (using TreeSearch)
Create a new node 
containing k.
Let w be the leaf reached 
by the search, and insert 
the new node at position w.
Example: insert 5
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Insertion
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Algorithm insert(k, v)
input: insert key k into the tree rooted by v
output: the tree root with k adding to v.
if isNull (v)

return newNode(k)
if k ≤ key(v)    // duplicate keys are okay

leftChild(v)  insert (k, leftChild(v))
else if k  key(v) 

rightChild(v)  insert (k, rightChild(v))
return v
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Deletion
To perform operation 
remove(k), we search for key 
k

Assume key k is in the tree, 
and let v be the node storing 
k

If node v has a null child w, 
we remove v from the tree by 
returning the other child of v 
to the parent of v.

Example: remove 4
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Deletion (cont.)
We consider the case where 
the key k to be removed is 
stored at a node v whose 
children are both present:
 find the minimum node w in 

the right subtree of v
 remove node w (which must 

have a null left child) by 
means of operation 
remove(w).

 copy key(w) into node v

Example: remove 3
Alternative: find the maximum 
node w in the left subtree of v
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Deletion (cont.)
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Algorithm remove(k, v)
input: delete the node containing key k
output: the tree without k.
if isNull (v)

return v     
if k < key(v)    

leftChild(v)  remove(k, leftChild(v))
else if k  key(v) 

rightChild(v)  remove(k, rightChild(v))
else if isNull(leftChild(v))

return rightChild(v)
else if isNull(rightChild(v))

return leftChild(v)
node min  treeMinimum(rightChild(v))
key(v)  key(min)
rightChild(v)  remove(key(min), rightChild(v))
return v
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Performance
Consider an ordered 
map with n items 
implemented by means 
of a binary search tree 
of height h
 the space used is O(n)

 methods get, put and 
remove take O(h) time

The height h is O(n) in 
the worst case and 
O(log n) in the best 
case
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Range Queries
An additional operation that can be answered by a 
binary search tree is a range query:

Example: Find all cars on eBay priced between 
$10,000 and $15,000.
Algorithm:
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Pseudo-code
Range-query algorithm:
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Visualization
Drawing subtrees as triangles, then we visit all the 
shaded subtrees.
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A range query on a 1-dimensional range tree.
Magnus Manske, 2012. Public-domain image.

Example
An example shows that we also need to test for the 
nodes we visit along the search paths for k1 and k2.
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Types of Nodes that We Visit
Types of notes that we visit:
 Let P1 be the path from the root to k1.
 Let P2 be the path from the root to k2.
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Performance
Let h denote the height of the binary search tree, T, and let s 
be the number of elements in the range.

Therefore, at most 2s + 4h + 1 nodes of T are visited and the 
operation findAllInRange runs in O(h + s) time.
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Index-Based Searching (Selection)
Add a new operation: 
 select(i): Return the item with the i th smallest key, where 1 ≤ 

i ≤ n.
Main idea to support this new method:
 Augment each node v to store nv, the number of elements in 

the subtree rooted at v.
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Maintaining the New Fields
We must now update nv fields when we do an 
insertion or deletion.
 If we are doing an insertion by creating a new 

node, w, in T, then we set nw = 1 and we 
increment the nv count for each node v that is an 
ancestor of w, that is, on the path from w to the 
root of T.

 If we are doing a deletion at a node, w, in T, then 
we decrement the nv count for each node v that is 
on the path from w’s parent to the root of T.
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Insertion Update Example
Updating the counts for inserting an element 
with key 27.
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Search Algorithm
We can do a search based on the rank, i, for 
the ith smallest element.
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;  if isNull(w)  nw = 0;  
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Example

A search for the 10th smallest element.
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