
Binary Search Trees 9/12/2019

1

1

Ch.03 Binary Search Trees

Presentation for use with the textbook Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

2

Binary Search
Binary search can perform nearest neighbor queries on an
ordered map that is implemented with an array, sorted by key
 similar to the high-low children’s game
 at each step, the number of candidate items is halved
 terminates after O(log n) steps

Example: find(7)

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

1 3 4 5 7 8 9 11 14 16 18 19

0

0

0

0

ml h

ml h

ml h

lm h

1

2

Binary Search Trees 9/12/2019

2

3

Search Tables
A search table is an ordered map implemented by means of a
sorted sequence
 We store the items in an array-based sequence, sorted by key
 We use an external comparator for the keys

Performance:
 Searches take O(log n) time, using binary search
 Inserting a new item takes O(n) time, since in the worst case we

have to shift n – 1 items to make room for the new item
 Removing an item takes O(n) time, since in the worst case we have

to shift n items to compact the items after the removal
The lookup table is effective only for ordered maps of small size
or for maps on which searches are the most common
operations, while insertions and removals are rarely performed.

4

Binary Search Trees
A binary search tree is a
binary tree storing keys (or
key-value entries) at its
internal nodes and satisfying
the following property:
 Let u, v, and w be three

nodes such that u is in
the left subtree of v and
w is in the right subtree
of v. We have
key(u) key(v) key(w)

An inorder traversal of a
binary search trees visits the
keys in non-decreasing order

6

92

41 8

3

4

Binary Search Trees 9/12/2019

3

5

Search
To search for a key k, we
trace a downward path
starting at the root
The next node visited
depends on the comparison
of k with the key of the
current node
If we reach an external
node, the key is not found
Example: get(4):
 Call TreeSearch(4,root)

The algorithms for nearest
neighbor queries
(predecessor and
successor) are similar.

Algorithm TreeSearch(k, v)
if isNull (v)

return v // v is null or empty node
if k key(v)

return TreeSearch(k, leftChild(v))
else if k key(v)

return v // key(v) = k.
else // k key(v)

return TreeSearch(k, rightChild(v))

6

92

41 8

6

Minimum & Maximum
The minimum node is null
if the root is null;
otherwise, it is the leftmost
node.
The maximum node is null
if the root is null;
otherwise, it is the
rightmost node.

Algorithm TreeMinimum(v)
if isNull (v)

return v // v is null or empty node
if isNull(leftChild(v))

return v
return TreeMinimum(leftChild(v))

6

92

41 8

5

6

Binary Search Trees 9/12/2019

4

7

Insertion
To perform operation
insert(k, o), we search for
key k (using TreeSearch)
Create a new node
containing k.
Let w be the leaf reached
by the search, and insert
the new node at position w.
Example: insert 5

6

92

41 8

6

92

41 8

5

w

w

8

Insertion

6

92

41 8

6

92

41 8

5

w

w

Algorithm insert(k, v)
input: insert key k into the tree rooted by v
output: the tree root with k adding to v.
if isNull (v)

return newNode(k)
if k ≤ key(v) // duplicate keys are okay

leftChild(v) insert (k, leftChild(v))
else if k key(v)

rightChild(v) insert (k, rightChild(v))
return v

7

8

Binary Search Trees 9/12/2019

5

9

Deletion
To perform operation
remove(k), we search for key
k

Assume key k is in the tree,
and let v be the node storing
k

If node v has a null child w,
we remove v from the tree by
returning the other child of v
to the parent of v.

Example: remove 4

6

92

41 8

5

v
w

6

92

51 8

10

Deletion (cont.)
We consider the case where
the key k to be removed is
stored at a node v whose
children are both present:
 find the minimum node w in

the right subtree of v
 remove node w (which must

have a null left child) by
means of operation
remove(w).

 copy key(w) into node v

Example: remove 3
Alternative: find the maximum
node w in the left subtree of v

3

1

8

6 9

5

v

w

2

5

1

8

6 9

v

2

9

10

Binary Search Trees 9/12/2019

6

11

Deletion (cont.)

3

1

8

6 9

5

v

w

2

5

1

8

6 9

v

2

Algorithm remove(k, v)
input: delete the node containing key k
output: the tree without k.
if isNull (v)

return v
if k < key(v)

leftChild(v) remove(k, leftChild(v))
else if k key(v)

rightChild(v) remove(k, rightChild(v))
else if isNull(leftChild(v))

return rightChild(v)
else if isNull(rightChild(v))

return leftChild(v)
node min treeMinimum(rightChild(v))
key(v) key(min)
rightChild(v) remove(key(min), rightChild(v))
return v

12

Performance
Consider an ordered
map with n items
implemented by means
of a binary search tree
of height h
 the space used is O(n)

 methods get, put and
remove take O(h) time

The height h is O(n) in
the worst case and
O(log n) in the best
case

11

12

Binary Search Trees 9/12/2019

7

Range Queries
An additional operation that can be answered by a
binary search tree is a range query:

Example: Find all cars on eBay priced between
$10,000 and $15,000.
Algorithm:

13

Pseudo-code
Range-query algorithm:

14

isNull(v)

13

14

Binary Search Trees 9/12/2019

8

Visualization
Drawing subtrees as triangles, then we visit all the
shaded subtrees.

15

A range query on a 1-dimensional range tree.
Magnus Manske, 2012. Public-domain image.

Example
An example shows that we also need to test for the
nodes we visit along the search paths for k1 and k2.

16

15

16

Binary Search Trees 9/12/2019

9

Types of Nodes that We Visit
Types of notes that we visit:
 Let P1 be the path from the root to k1.
 Let P2 be the path from the root to k2.

17

Performance
Let h denote the height of the binary search tree, T, and let s
be the number of elements in the range.

Therefore, at most 2s + 4h + 1 nodes of T are visited and the
operation findAllInRange runs in O(h + s) time.

18

17

18

Binary Search Trees 9/12/2019

10

Index-Based Searching (Selection)
Add a new operation:
 select(i): Return the item with the i th smallest key, where 1 ≤

i ≤ n.
Main idea to support this new method:
 Augment each node v to store nv, the number of elements in

the subtree rooted at v.

19

Maintaining the New Fields
We must now update nv fields when we do an
insertion or deletion.
 If we are doing an insertion by creating a new

node, w, in T, then we set nw = 1 and we
increment the nv count for each node v that is an
ancestor of w, that is, on the path from w to the
root of T.

 If we are doing a deletion at a node, w, in T, then
we decrement the nv count for each node v that is
on the path from w’s parent to the root of T.

20

19

20

Binary Search Trees 9/12/2019

11

Insertion Update Example
Updating the counts for inserting an element
with key 27.

21

Search Algorithm
We can do a search based on the rank, i, for
the ith smallest element.

22

; if isNull(w) nw = 0;

21

22

Binary Search Trees 9/12/2019

12

Example

A search for the 10th smallest element.

23

23

