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Ch 01. Analysis of Algorithms
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Acknowledgement: Parts of slides in this presentation come from 
the materials accompanying the textbook Algorithm Design and 
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

What’s an Algorithm?

 Computer Science is about problem-solving using 
computers.
 Software is a solution to some problems.
 Algorithm is a recipe/design inside a software.
 Informally,  an algorithm is 

a method for solving a well-specified computational 
problem.

 Algorithms become more and more important in 
digital age.
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Homo Deus: A Brief History of Tomorrow

 Organisms are algorithms, and as such homo 
sapiens (today’s human) may not be dominant in 
the future. 

 Computers will do much better than organisms. 
Many professions will be out-of-date and labors 
become less worth. 

 Harari believes that humanism will push humans to 
search for immortality, happiness, and power.

 Harari suggests the possibility of the replacement 
of humankind with a super-man, i.e. "homo deus“,  
endowed with abilities such as eternal life and 
artificial intelligence.

Central thesis:

A 2016 top seller book by Historian Yuval Noah Harari

Algorithms and Data Structures
 An algorithm is a step-by-step procedure for 

performing some task in a finite amount of 
time.
 Typically, an algorithm takes input data and 

produces an output based upon it.

 A data structure is a systematic way of 
organizing and accessing data.
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Experimental Studies of Algorithms

 Write a program 
implementing the 
algorithm

 Run the program with 
inputs of varying size 
and composition, 
noting the time 
needed:

 Plot the results 0
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Limitations of Experiments
 It is necessary to implement the algorithm, 

which may be difficult.
 Results may not be indicative of the running 

time on other inputs not included in the 
experiment. 

 In order to compare two algorithms, the same 
hardware and software environments must be 
used.
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Theoretical Analysis
 Uses a high-level description of the algorithm 

instead of an implementation
 Characterizes running time as a function of 

the input size, n
 Takes into account all possible inputs
 Allows us to evaluate the speed of an 

algorithm independent of the 
hardware/software environment

8

Pseudocode
 High-level description 

of an algorithm
 More structured than 

English prose
 Less detailed than a real 

program
 Preferred notation for 

describing algorithms
 Easy map to real 

programming 
languages, or to 
primitive operations of 
CPU
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Pseudocode Details
 Control flow

 if … then … [else …]

 while … do …

 for … do …

 Indentation replaces braces 
 Method declaration

Algorithm method (arg [, arg…])

Input …

Output …

 Method call
method (arg [, arg…])

 Return value
return expression

 Expressions:
Assignment

 Equality testing

n2 Superscripts and other 
mathematical 
formatting allowed
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The Random Access Machine 
(RAM) Model
A RAM consists of
 A CPU
 An potentially unbounded bank 

of memory cells, each of which 
can hold an arbitrary number or 
character

 Memory cells are numbered and 
accessing any cell in memory 
takes unit time

0
1
2

Memory

CPU
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Primitive Operations
 Basic computations 

performed by an algorithm
 Identifiable in pseudocode
 Largely independent from the 

programming language
 Exact definition not important 

(we will see why later)
 Assumed to take a constant 

amount of time in the RAM 
model

 Examples:
 Arithmetic 

operations
 Assigning a value 

to a variable
 Indexing into an 

array
 Calling a method
 Returning from a 

method

12

Seven Important Functions
 Seven functions that 

often appear in algorithm 
analysis:
 Constant  1
 Logarithmic  log n
 Linear  n
 N-Log-N  n log n
 Quadratic  n2

 Cubic  n3

 Exponential  2n

 In a log-log chart, the 
slope of the line 
corresponds to the 
growth rate

1E+0
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1E+4
1E+6
1E+8

1E+10
1E+12
1E+14
1E+16
1E+18
1E+20
1E+22
1E+24
1E+26
1E+28
1E+30

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
n

T
(n

)

Cubic

Quadratic

Linear

n = 10x, T(n) = 10y  x = log n, y = log(T(n))
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Functions Graphed Using “Normal” Scale

13

g(n) = 2ng(n) = 1

g(n) = lg n

g(n) = n lg n

g(n) = n

g(n) = n2

g(n) = n3
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Counting Primitive Operations
 Example: By inspecting the pseudocode, we can determine 

the minimum and maximum number of primitive operations 
executed by an algorithm, as a function of the input size

How many primitive 
operations at each line?

2
3n-1

2(n-1)
0 to 2(n-1)

1

Minimum:  2 + 3n-1 + 2(n-1) + 1 = 5n 
Maximum: 2 + 3n-1 + 4(n-1) + 1 = 7n - 2

13
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Estimating Running Time
 Algorithm arrayMax executes 7n  2 primitive 

operations in the worst case, 5n in the best case.  
Define:
a = Time taken by the fastest primitive operation
b = Time taken by the slowest primitive operation

 Let T(n) be worst-case time of arrayMax. Then
a(5n)  T(n)  b(7n  2)

 Hence, the running time T(n) is bounded by two 
linear functions

16

Running Time
 The running time of an 

algorithm typically grows 
with the input size.

 Average case time is often 
difficult to determine.

 We focus primarily on the 
worst case running time.
 Easier to analyze
 Crucial to applications such as 

games, finance and robotics 0
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Growth Rate of Running Time

 Changing the hardware/software 
environment 
 Affects T(n) by a constant factor, but
 Does not alter the growth rate of T(n)

 The linear growth rate of the running time 
T(n) is an intrinsic property of algorithm 
arrayMax

Why Growth Rate Matters

18

if runtime 
is...

time for n + 1 time for 2 n time for 4 n

c lg n c lg (n + 1) c (lg n + 1) c(lg n + 2)

c n c (n + 1) 2c n 4c n

c n lg n
~ c n lg n

+  c n
2c n lg n + 

2cn
4c n lg n + 

4cn

c n2 ~ c n2 + 2c n 4c n2 16c n2

c n3 ~ c n3 + 3c n2 8c n3 64c n3

c 2n c 2n+1 c 22n c 24n

runtime
quadruples
when 
problem
size doubles
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Analyzing Recursive Algorithms
 Use a function, T(n), to derive a recurrence 

relation that characterizes the running time of 
the algorithm in terms of smaller values of n.

19
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Constant Factors

 The growth rate is 
minimally affected by
 constant factors or 
 lower-order terms

 Examples
 102n  105 is a linear 

function
 102n2  105n is a 

quadratic function 1E+0
1E+2
1E+4
1E+6
1E+8

1E+10
1E+12
1E+14
1E+16
1E+18
1E+20
1E+22
1E+24
1E+26

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
n

T
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)

Quadratic
Quadratic
Linear
Linear
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Big-Oh Notation
 Given functions f(n) and 

g(n), we say that f(n) is 
O(g(n)) if there are 
positive constants
c and n0 such that
f(n)  cg(n)  for n  n0

 We also say g(n) is an 
asymptotic upper bound
for f(n).

1
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2n+10
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Example: 2n  10 is O(n)
2n  10  cn
(c  2) n  10
n  10(c  2)
Pick c 3 and n0 10
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Relatives of Big-Oh
big-Omega

 f(n) is (g(n)) if there is a constant c > 0 
and an integer constant n0  1 such that 

f(n)  c g(n) for n  n0

big-Theta
 f(n) is (g(n)) if there are constants c’ > 0 and 

c’’ > 0 and an integer constant n0  1 such that
c’g(n)  f(n)  c’’g(n) for n  n0

Theorem: Θ is an equivalence relation.
(reflexive, symmetric, and transitive)

21
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Intuition for Asymptotic 
Notation

big-Oh
 f(n) is O(g(n)) if f(n) is asymptotically 

less than or equal to g(n)
big-Omega
 f(n) is (g(n)) if f(n) is asymptotically 

greater than or equal to g(n)
big-Theta
 f(n) is (g(n)) if f(n) is asymptotically 

equal to g(n)

24

Example Uses of the 
Relatives of Big-Oh

f(n) is (g(n)) if it is (n2) and O(n2). We have already seen the former, 
for the latter recall that f(n) is O(g(n)) if there is a constant c > 0 and an 
integer constant n0  1 such that f(n) < c g(n) for n  n0 

Let c = 5 and n0 = 1

 5n2 is (n2)

f(n) is (g(n)) if there is a constant c > 0 and an integer constant n0  1 
such that f(n)  c g(n) for n  n0

let c = 1 and n0 = 1

 5n2 is (n)

f(n) is (g(n)) if there is a constant c > 0 and an integer constant n0  1 
such that f(n)  c g(n) for n  n0

let c = 5 and n0 = 1

 5n2 is (n2)

23
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Big-Oh, Big-Theta, Big Omega Rules

 If f(n) is a polynomial of degree d, then f(n) is 
O(nd), i.e.,

1. Drop lower-order terms
2. Drop constant factors

 Use the smallest possible class of functions
 Say “2n is O(n)” instead of “2n is O(n2)”

 Use the simplest expression of the class
 Say “3n  5 is O(n)” instead of “3n  5 is O(n)”

Θ(n3): n3

5n3+ 4n
105n3+ 4n2 + 6n

Θ(n2): n2

5n2+ 4n + 6
n2 + 5

Θ(log n): log n
log n2

log (n + n3)

Examples
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Math you need to Review
 Properties of powers:

a(b+c) = aba c
abc = (ab)c

ab /ac = a(b-c)

b = alogab

bc = ac logab

 Properties of logarithms:
logb(xy) = logbx + logby
logb (x/y) = logbx - logby
logbxa = a logbx
logba = logxa/logxb

 Summations
 Powers
 Logarithms
 Proof techniques
 Basic probability

27

Functions in the order of 
faster growth rate

 c0,  (log n)c1,  nc2,  c3
n

 c0, c1, c2, are positive constants;
 c3 is a constant greater than 1.

28
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f(n) grows slower than  g(n) (or g(n) 
grows faster than f(n)) if

lim( f(n) / g(n) ) = 0,   
n → ∞

Notation: f(n) = o( g(n) )
pronounced "little oh“

Little oh

f(n) grows faster than  g(n) (or g(n) grows 
slower than f(n)) if

lim( f(n) / g(n) ) = ∞,   
n -> ∞

Notation: f(n) = ω (g(n))
pronounced "little omega“

Little omega

29

30



16

Relation Summary:

lim
n


)(

)(

ng

nf ∞    f(n) = ω (g(n))
C     f(n) = Θ (g(n))
0     f(n) = o (g(n)) 

f(n) =  (g(n))
f(n) = O(g(n))

Example: Which function grows faster? 
(log n)n and nlog n

Example: Some functions are not comparable asymptotically.
f(n) = n(1 – sin(90on))
g(n) = n(1 – cos(90on))

Possible Quiz Problem
Decide the asymptotical relation of the following function 
pairs f and g, i.e., f = O(g), or f = (g), or both?

 f = 10n2 + n(log n),     g = 100n(log n)2

 f = 100n + 3n2.5,         g = n2(log n)

32
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A Case Study in Algorithm Analysis
 Given an array of n integers, 

find the subarray, A[j..k] that 
maximizes the sum

 In addition to being an 
interview question for testing 
the thinking skills of job 
candidates, this maximum 
subarray problem also has 
applications in pattern 
analysis in digitized images.

34

A First (Slow) Solution

Compute the 
maximum of every 
possible subarray 
summation A[j, k] of 
the array A
separately.

• The outer loop, for index j, will iterate n times, its middle-inner 
loop, for index k, will iterate j ~ n times, and the inner-most 
loop, for index i, will iterate j ~ k times. 

• Thus, the running time of the MaxsubSlow algorithm is O (n3).
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An Improved Algorithm
 A more efficient way to calculate these summations is 

to consider prefix sums

 If we are given all such prefix sums (and assuming 
S0=0), we can compute any summation sj,k in constant 
time as

i = 0 1 2 3 4 5 6 7 8 9 10 11
A= -2 -4 3 -1 5 6 -7 -2 4 -3 2
S= 0 -2 -6 -3 -4 1 7 0 -2 2 -1 1

Example:

Max = s6,3 = S6 – S2 = 7 – (–6) = 13.

An Improved Algorithm, cont.
 Compute all the prefix sums  -- O(n), time and space
 Then compute all the subarray sums  -- O(n2)

36

i:  n iterations

j:  n iterations
k:  j ~ n iterations

35
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A Linear-Time Algorithm
 Instead of computing prefix sum St = s1,t, let us 

compute a maximum suffix sum, Mt, which is the 
maximum of any subarray (including the empty one) 
ending at t:

 If Mt > 0, then it is the summation value for a 
maximum subarray that ends at t, and if Mt = 0, then 
we can safely ignore any subarray that ends at t.

 If we know all the Mt values, for t = 1, 2, …, n, then 
the solution to the maximum subarray problem would 
simply be the maximum of all these values.

37

A Linear-Time Algorithm, cont.
 If t = 0, then Mt = 0.
 For t ≥ 1, to compute Mt, the maximum subarray that ends at t, we 

can add A[t] to Mt-1. If the result is a positive sum, then we are 
done; if it is negative, we let Mt be 0, i.e., take the empty subarray, 
for there is no non-empty subarray that ends at t with a positive 
summation.

 So we can define M0 = 0 and recursively

38

t = 0 1 2 3 4 5 6 7 8 9 10 11
A= -2 -4 3 -1 5 6 -7 -2 4 -3 2
M= 0 0 0 3 2 7 13 6 4 8 5 7

Example:

Max = M6 = 13.

37
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A Linear-Time Algorithm, cont.

 The MaxsubFastest algorithm consists of two loops, which each 
iterate exactly n times and take O(1) time in each iteration. Thus, 
the total running time of the MaxsubFastest algorithm is O(n), time 
and space. 39

Possible Quiz Problem

 How to use only a constant number of space, instead of storing Mt

for all t ?
 How to find the values of j and k if A[j, k] contains the maximum of 

every possible subarray summation of the array A in linear time? 
40
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Summations


f (i)  f (1) f (2)  f (n 1)  f (n)
i1

n



i 
n(n 1)

2i1

n

 i2 
2n3  3n2  n

6i1

n



ai 
an1 1

a 1i 0

n

  for a 1



n

i

kk ni
1

1 )(

Summations




n

i

nOi
1

)(ln/1

using Integral of 1/x.





n

i

nnOi
1

)log(log

using Stirling’s approximation

n! 2n ( n
e )n
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The Factorial Function
Definition:

Stirling’s approximation:

or         log(n!) = O(n log n)

n!1 2  3   (n 1)  n

n! 2n ( n
e )n

Bounds of Factorial Function
Let
then

which gives 

So

Similar to  

43
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Average Case Analysis
 In worst case analysis of time complexity we 

select the maximum cost among all possible 
inputs of size n.

 In average case analysis, the running time is 
taken to be the average time over all inputs 
of size n.
 Unfortunately, there are infinite inputs.
 It is necessary to know the probabilities of all 

input occurrences.
 The analysis is in many cases complex and 

lengthy.

What is the average case of 
executing “currentMax  A[i]”?

Number of Assignments: the worst case is n.  If numbers 
are randomly distributed, then the average case is 1+1/2 
+ 1/3 + 1/4 + … + 1/n = O(log n).
This is because A[i] has only 1/i probability to be the max 
of A[1], A[2], …, A[i], under the assumption that all 
numbers are randomly distributed.

45
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Amortized Analysis

 The amortized running time of an operation within a 
series of operations is the worst-case running time of 
the series of operations divided by the number of 
operations.

 Example: A growable array, S. When needing to grow:
a. Allocate a new array B of larger capacity.
b. Copy A[i] to B[i], for i = 0, . . . , n − 1, where n is size of A.
c. Let A = B, that is, we use B as the array now supporting A.

47

48

Dynamic Array Description
 Let add(e) be the operation 

that adds element e at the 
end of the array

 When the array is full, we 
replace the array with a 
larger one

 But how large should the 
new array be?
 Incremental strategy: increase 

the size by a constant c
 Doubling strategy: double the 

size

Algorithm add(e)
if n = A.length then

B  new array of
size …

for i  0 to n1 do
B[i]  A[i]

A  B
n  n + 1
A[n1]  e

47
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Comparison of the Strategies

 We compare the incremental strategy and 
the doubling strategy by analyzing the total 
time T(n) needed to perform a series of n
add operations

 We assume that we start with an empty list 
represented by a growable array of size 1

 We call amortized time of an add operation 
the average time taken by an add operation 
over the series of operations, i.e.,  T(n)/n.

50

Incremental Strategy Analysis 
 Over n add operations, we replace the array k = n/c 

times, where c is a constant
 The total time T(n) of a series of n add operations is 

proportional to
T(n) = n + c + 2c + 3c + 4c + … + kc 

= n + c(1 + 2 + 3 + … + k) 

= n + ck(k + 1)/2

 Since c is a constant, T(n) is O(n + k2), i.e., O(n2)

 Thus, the amortized time of an add operation, 
T(n)/n, is O(n).

49
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Doubling Strategy Analysis:
The Aggregate Method
 We replace the array k = log2 n 

times
 The total time T(n) of a series of n

push operations is proportional to
n + 1 + 2 + 4 + 8 + …+ 2k =
n  2k + 1  1 = 

3n  1

 T(n) is O(n).

 The amortized time of an add 
operation is O(1).

geometric series

1

2

1
4

8
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Doubling Strategy Analysis:
The Accounting Method

 We view the computer as a coin-operated appliance that requires 
one cyber-dollar for a constant amount of computing time.

 For this example, we shall pay each add operation 3 cyber-dollars.
• Set a saving account with s0 = 0 initially. 
• The ith operation has a budget cost of ai= 3, which is the amortized 

cost of each operation.
• The account value after the i th add operation  is

si = si-1 + ai – ci          where ci  is the actual cost.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...

Array 
size

1 2 4 8 16 32

ci 1 2 3 1 5 1 1 1 9 1 1 1 1 1 1 1 17 1 1 1 ...

si 2 3 3 5 3 5 7 9 3 5 7 9 11 15 17 19 5 7 9 11 ...

Note: the account value si never goes under 0.

51
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Doubling Strategy Analysis:
The Accounting Method
 We shall pay each add operation ai= 3 cyber-dollars, that is, it will 

have an amortized O(1) amortized running time.
 We over-pay each add operation not causing an overflow 2 

cyber-dollars.
 An overflow occurs when the array A has 2i elements.
 Thus, doubling the size of the array will require 2i cyber-

dollars. 
 These cyber-dollars are at the elements stored in cells 2i−1 

through 2i−1.

53

Possible Quiz Problem
For dynamic arrays, instead of doubling the size of the 
current array, the current array size is tripled when it is 
full. What will be amortized cost of add(e)? 
What will is the answer when the new array size is only
50% more than the current array?

54
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Summary
 Worst-case complexity: Given an upper 

bound at the worst case
 Average complexity: Assume a probability 

distribution of all inputs, give the complexity 
under this distribution.

 Amortized complexity: Compute the worst 
case of the sum of a sequence of operations, 
and then divide it by the number of 
operations.
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