
1

Ch 01. Analysis of Algorithms

AlgorithmInput Output

1

Acknowledgement: Parts of slides in this presentation come from
the materials accompanying the textbook Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

What’s an Algorithm?

 Computer Science is about problem-solving using
computers.
 Software is a solution to some problems.
 Algorithm is a recipe/design inside a software.
 Informally, an algorithm is

a method for solving a well-specified computational
problem.

 Algorithms become more and more important in
digital age.

AlgorithmProblem Solution

1

2

2

Homo Deus: A Brief History of Tomorrow

 Organisms are algorithms, and as such homo
sapiens (today’s human) may not be dominant in
the future.

 Computers will do much better than organisms.
Many professions will be out-of-date and labors
become less worth.

 Harari believes that humanism will push humans to
search for immortality, happiness, and power.

 Harari suggests the possibility of the replacement
of humankind with a super-man, i.e. "homo deus“,
endowed with abilities such as eternal life and
artificial intelligence.

Central thesis:

A 2016 top seller book by Historian Yuval Noah Harari

Algorithms and Data Structures
 An algorithm is a step-by-step procedure for

performing some task in a finite amount of
time.
 Typically, an algorithm takes input data and

produces an output based upon it.

 A data structure is a systematic way of
organizing and accessing data.

4

AlgorithmInput Output

3

4

3

5

Experimental Studies of Algorithms

 Write a program
implementing the
algorithm

 Run the program with
inputs of varying size
and composition,
noting the time
needed:

 Plot the results 0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100
Input Size

Ti
m

e
(m

s)

6

Limitations of Experiments
 It is necessary to implement the algorithm,

which may be difficult.
 Results may not be indicative of the running

time on other inputs not included in the
experiment.

 In order to compare two algorithms, the same
hardware and software environments must be
used.

5

6

4

7

Theoretical Analysis
 Uses a high-level description of the algorithm

instead of an implementation
 Characterizes running time as a function of

the input size, n
 Takes into account all possible inputs
 Allows us to evaluate the speed of an

algorithm independent of the
hardware/software environment

8

Pseudocode
 High-level description

of an algorithm
 More structured than

English prose
 Less detailed than a real

program
 Preferred notation for

describing algorithms
 Easy map to real

programming
languages, or to
primitive operations of
CPU

7

8

5

9

Pseudocode Details
 Control flow

 if … then … [else …]

 while … do …

 for … do …

 Indentation replaces braces
 Method declaration

Algorithm method (arg [, arg…])

Input …

Output …

 Method call
method (arg [, arg…])

 Return value
return expression

 Expressions:
Assignment

 Equality testing

n2 Superscripts and other
mathematical
formatting allowed

10

The Random Access Machine
(RAM) Model
A RAM consists of
 A CPU
 An potentially unbounded bank

of memory cells, each of which
can hold an arbitrary number or
character

 Memory cells are numbered and
accessing any cell in memory
takes unit time

0
1
2

Memory

CPU

9

10

6

11

Primitive Operations
 Basic computations

performed by an algorithm
 Identifiable in pseudocode
 Largely independent from the

programming language
 Exact definition not important

(we will see why later)
 Assumed to take a constant

amount of time in the RAM
model

 Examples:
 Arithmetic

operations
 Assigning a value

to a variable
 Indexing into an

array
 Calling a method
 Returning from a

method

12

Seven Important Functions
 Seven functions that

often appear in algorithm
analysis:
 Constant  1
 Logarithmic  log n
 Linear  n
 N-Log-N  n log n
 Quadratic  n2

 Cubic  n3

 Exponential  2n

 In a log-log chart, the
slope of the line
corresponds to the
growth rate

1E+0
1E+2
1E+4
1E+6
1E+8

1E+10
1E+12
1E+14
1E+16
1E+18
1E+20
1E+22
1E+24
1E+26
1E+28
1E+30

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
n

T
(n

)

Cubic

Quadratic

Linear

n = 10x, T(n) = 10y  x = log n, y = log(T(n))

11

12

7

Functions Graphed Using “Normal” Scale

13

g(n) = 2ng(n) = 1

g(n) = lg n

g(n) = n lg n

g(n) = n

g(n) = n2

g(n) = n3

14

Counting Primitive Operations
 Example: By inspecting the pseudocode, we can determine

the minimum and maximum number of primitive operations
executed by an algorithm, as a function of the input size

How many primitive
operations at each line?

2
3n-1

2(n-1)
0 to 2(n-1)

1

Minimum: 2 + 3n-1 + 2(n-1) + 1 = 5n
Maximum: 2 + 3n-1 + 4(n-1) + 1 = 7n - 2

13

14

8

15

Estimating Running Time
 Algorithm arrayMax executes 7n  2 primitive

operations in the worst case, 5n in the best case.
Define:
a = Time taken by the fastest primitive operation
b = Time taken by the slowest primitive operation

 Let T(n) be worst-case time of arrayMax. Then
a(5n)  T(n)  b(7n  2)

 Hence, the running time T(n) is bounded by two
linear functions

16

Running Time
 The running time of an

algorithm typically grows
with the input size.

 Average case time is often
difficult to determine.

 We focus primarily on the
worst case running time.
 Easier to analyze
 Crucial to applications such as

games, finance and robotics 0

20

40

60

80

100

120

Ru
nn

in
g

Ti
m

e

1000 2000 3000 4000
Input Size

best case
average case
worst case

15

16

9

17

Growth Rate of Running Time

 Changing the hardware/software
environment
 Affects T(n) by a constant factor, but
 Does not alter the growth rate of T(n)

 The linear growth rate of the running time
T(n) is an intrinsic property of algorithm
arrayMax

Why Growth Rate Matters

18

if runtime
is...

time for n + 1 time for 2 n time for 4 n

c lg n c lg (n + 1) c (lg n + 1) c(lg n + 2)

c n c (n + 1) 2c n 4c n

c n lg n
~ c n lg n

+ c n
2c n lg n +

2cn
4c n lg n +

4cn

c n2 ~ c n2 + 2c n 4c n2 16c n2

c n3 ~ c n3 + 3c n2 8c n3 64c n3

c 2n c 2n+1 c 22n c 24n

runtime
quadruples
when
problem
size doubles

17

18

10

Analyzing Recursive Algorithms
 Use a function, T(n), to derive a recurrence

relation that characterizes the running time of
the algorithm in terms of smaller values of n.

19

20

Constant Factors

 The growth rate is
minimally affected by
 constant factors or
 lower-order terms

 Examples
 102n  105 is a linear

function
 102n2  105n is a

quadratic function 1E+0
1E+2
1E+4
1E+6
1E+8

1E+10
1E+12
1E+14
1E+16
1E+18
1E+20
1E+22
1E+24
1E+26

1E+0 1E+2 1E+4 1E+6 1E+8 1E+10
n

T
(n

)

Quadratic
Quadratic
Linear
Linear

19

20

11

21

Big-Oh Notation
 Given functions f(n) and

g(n), we say that f(n) is
O(g(n)) if there are
positive constants
c and n0 such that
f(n)  cg(n) for n  n0

 We also say g(n) is an
asymptotic upper bound
for f(n).

1

10

100

1,000

10,000

1 10 100 1,000
n

3n

2n+10

n

Example: 2n  10 is O(n)
2n  10  cn
(c  2) n  10
n  10(c  2)
Pick c 3 and n0 10

22

Relatives of Big-Oh
big-Omega

 f(n) is (g(n)) if there is a constant c > 0
and an integer constant n0  1 such that

f(n)  c g(n) for n  n0

big-Theta
 f(n) is (g(n)) if there are constants c’ > 0 and

c’’ > 0 and an integer constant n0  1 such that
c’g(n)  f(n)  c’’g(n) for n  n0

Theorem: Θ is an equivalence relation.
(reflexive, symmetric, and transitive)

21

22

12

23

Intuition for Asymptotic
Notation

big-Oh
 f(n) is O(g(n)) if f(n) is asymptotically

less than or equal to g(n)
big-Omega
 f(n) is (g(n)) if f(n) is asymptotically

greater than or equal to g(n)
big-Theta
 f(n) is (g(n)) if f(n) is asymptotically

equal to g(n)

24

Example Uses of the
Relatives of Big-Oh

f(n) is (g(n)) if it is (n2) and O(n2). We have already seen the former,
for the latter recall that f(n) is O(g(n)) if there is a constant c > 0 and an
integer constant n0  1 such that f(n) < c g(n) for n  n0

Let c = 5 and n0 = 1

 5n2 is (n2)

f(n) is (g(n)) if there is a constant c > 0 and an integer constant n0  1
such that f(n)  c g(n) for n  n0

let c = 1 and n0 = 1

 5n2 is (n)

f(n) is (g(n)) if there is a constant c > 0 and an integer constant n0  1
such that f(n)  c g(n) for n  n0

let c = 5 and n0 = 1

 5n2 is (n2)

23

24

13

25

Big-Oh, Big-Theta, Big Omega Rules

 If f(n) is a polynomial of degree d, then f(n) is
O(nd), i.e.,

1. Drop lower-order terms
2. Drop constant factors

 Use the smallest possible class of functions
 Say “2n is O(n)” instead of “2n is O(n2)”

 Use the simplest expression of the class
 Say “3n  5 is O(n)” instead of “3n  5 is O(n)”

Θ(n3): n3

5n3+ 4n
105n3+ 4n2 + 6n

Θ(n2): n2

5n2+ 4n + 6
n2 + 5

Θ(log n): log n
log n2

log (n + n3)

Examples

25

26

14

Math you need to Review
 Properties of powers:

a(b+c) = aba c
abc = (ab)c

ab /ac = a(b-c)

b = alogab

bc = ac logab

 Properties of logarithms:
logb(xy) = logbx + logby
logb (x/y) = logbx - logby
logbxa = a logbx
logba = logxa/logxb

 Summations
 Powers
 Logarithms
 Proof techniques
 Basic probability

27

Functions in the order of
faster growth rate

 c0, (log n)c1, nc2, c3
n

 c0, c1, c2, are positive constants;
 c3 is a constant greater than 1.

28

27

28

15

f(n) grows slower than g(n) (or g(n)
grows faster than f(n)) if

lim(f(n) / g(n)) = 0,
n → ∞

Notation: f(n) = o(g(n))
pronounced "little oh“

Little oh

f(n) grows faster than g(n) (or g(n) grows
slower than f(n)) if

lim(f(n) / g(n)) = ∞,
n -> ∞

Notation: f(n) = ω (g(n))
pronounced "little omega“

Little omega

29

30

16

Relation Summary:

lim
n


)(

)(

ng

nf ∞  f(n) = ω (g(n))
C  f(n) = Θ (g(n))
0  f(n) = o (g(n))

f(n) = (g(n))
f(n) = O(g(n))

Example: Which function grows faster?
(log n)n and nlog n

Example: Some functions are not comparable asymptotically.
f(n) = n(1 – sin(90on))
g(n) = n(1 – cos(90on))

Possible Quiz Problem
Decide the asymptotical relation of the following function
pairs f and g, i.e., f = O(g), or f = (g), or both?

 f = 10n2 + n(log n), g = 100n(log n)2

 f = 100n + 3n2.5, g = n2(log n)

32

31

32

17

33

A Case Study in Algorithm Analysis
 Given an array of n integers,

find the subarray, A[j..k] that
maximizes the sum

 In addition to being an
interview question for testing
the thinking skills of job
candidates, this maximum
subarray problem also has
applications in pattern
analysis in digitized images.

34

A First (Slow) Solution

Compute the
maximum of every
possible subarray
summation A[j, k] of
the array A
separately.

• The outer loop, for index j, will iterate n times, its middle-inner
loop, for index k, will iterate j ~ n times, and the inner-most
loop, for index i, will iterate j ~ k times.

• Thus, the running time of the MaxsubSlow algorithm is O (n3).

33

34

18

An Improved Algorithm
 A more efficient way to calculate these summations is

to consider prefix sums

 If we are given all such prefix sums (and assuming
S0=0), we can compute any summation sj,k in constant
time as

i = 0 1 2 3 4 5 6 7 8 9 10 11
A= -2 -4 3 -1 5 6 -7 -2 4 -3 2
S= 0 -2 -6 -3 -4 1 7 0 -2 2 -1 1

Example:

Max = s6,3 = S6 – S2 = 7 – (–6) = 13.

An Improved Algorithm, cont.
 Compute all the prefix sums -- O(n), time and space
 Then compute all the subarray sums -- O(n2)

36

i: n iterations

j: n iterations
k: j ~ n iterations

35

36

19

A Linear-Time Algorithm
 Instead of computing prefix sum St = s1,t, let us

compute a maximum suffix sum, Mt, which is the
maximum of any subarray (including the empty one)
ending at t:

 If Mt > 0, then it is the summation value for a
maximum subarray that ends at t, and if Mt = 0, then
we can safely ignore any subarray that ends at t.

 If we know all the Mt values, for t = 1, 2, …, n, then
the solution to the maximum subarray problem would
simply be the maximum of all these values.

37

A Linear-Time Algorithm, cont.
 If t = 0, then Mt = 0.
 For t ≥ 1, to compute Mt, the maximum subarray that ends at t, we

can add A[t] to Mt-1. If the result is a positive sum, then we are
done; if it is negative, we let Mt be 0, i.e., take the empty subarray,
for there is no non-empty subarray that ends at t with a positive
summation.

 So we can define M0 = 0 and recursively

38

t = 0 1 2 3 4 5 6 7 8 9 10 11
A= -2 -4 3 -1 5 6 -7 -2 4 -3 2
M= 0 0 0 3 2 7 13 6 4 8 5 7

Example:

Max = M6 = 13.

37

38

20

A Linear-Time Algorithm, cont.

 The MaxsubFastest algorithm consists of two loops, which each
iterate exactly n times and take O(1) time in each iteration. Thus,
the total running time of the MaxsubFastest algorithm is O(n), time
and space. 39

Possible Quiz Problem

 How to use only a constant number of space, instead of storing Mt

for all t ?
 How to find the values of j and k if A[j, k] contains the maximum of

every possible subarray summation of the array A in linear time?
40

39

40

21

Summations


f (i)  f (1) f (2)  f (n 1)  f (n)
i1

n



i 
n(n 1)

2i1

n

 i2 
2n3  3n2  n

6i1

n



ai 
an1 1

a 1i 0

n

 for a 1



n

i

kk ni
1

1)(

Summations




n

i

nOi
1

)(ln/1

using Integral of 1/x.





n

i

nnOi
1

)log(log

using Stirling’s approximation

n! 2n (n
e)n

41

42

22

The Factorial Function
Definition:

Stirling’s approximation:

or log(n!) = O(n log n)

n!1 2  3   (n 1)  n

n! 2n (n
e)n

Bounds of Factorial Function
Let
then

which gives

So

Similar to

43

44

23

Average Case Analysis
 In worst case analysis of time complexity we

select the maximum cost among all possible
inputs of size n.

 In average case analysis, the running time is
taken to be the average time over all inputs
of size n.
 Unfortunately, there are infinite inputs.
 It is necessary to know the probabilities of all

input occurrences.
 The analysis is in many cases complex and

lengthy.

What is the average case of
executing “currentMax  A[i]”?

Number of Assignments: the worst case is n. If numbers
are randomly distributed, then the average case is 1+1/2
+ 1/3 + 1/4 + … + 1/n = O(log n).
This is because A[i] has only 1/i probability to be the max
of A[1], A[2], …, A[i], under the assumption that all
numbers are randomly distributed.

45

46

24

Amortized Analysis

 The amortized running time of an operation within a
series of operations is the worst-case running time of
the series of operations divided by the number of
operations.

 Example: A growable array, S. When needing to grow:
a. Allocate a new array B of larger capacity.
b. Copy A[i] to B[i], for i = 0, . . . , n − 1, where n is size of A.
c. Let A = B, that is, we use B as the array now supporting A.

47

48

Dynamic Array Description
 Let add(e) be the operation

that adds element e at the
end of the array

 When the array is full, we
replace the array with a
larger one

 But how large should the
new array be?
 Incremental strategy: increase

the size by a constant c
 Doubling strategy: double the

size

Algorithm add(e)
if n = A.length then

B  new array of
size …

for i  0 to n1 do
B[i]  A[i]

A  B
n  n + 1
A[n1]  e

47

48

25

49

Comparison of the Strategies

 We compare the incremental strategy and
the doubling strategy by analyzing the total
time T(n) needed to perform a series of n
add operations

 We assume that we start with an empty list
represented by a growable array of size 1

 We call amortized time of an add operation
the average time taken by an add operation
over the series of operations, i.e., T(n)/n.

50

Incremental Strategy Analysis
 Over n add operations, we replace the array k = n/c

times, where c is a constant
 The total time T(n) of a series of n add operations is

proportional to
T(n) = n + c + 2c + 3c + 4c + … + kc

= n + c(1 + 2 + 3 + … + k)

= n + ck(k + 1)/2

 Since c is a constant, T(n) is O(n + k2), i.e., O(n2)

 Thus, the amortized time of an add operation,
T(n)/n, is O(n).

49

50

26

51

Doubling Strategy Analysis:
The Aggregate Method
 We replace the array k = log2 n

times
 The total time T(n) of a series of n

push operations is proportional to
n + 1 + 2 + 4 + 8 + …+ 2k =
n  2k + 1  1 =

3n  1

 T(n) is O(n).

 The amortized time of an add
operation is O(1).

geometric series

1

2

1
4

8

52

Doubling Strategy Analysis:
The Accounting Method

 We view the computer as a coin-operated appliance that requires
one cyber-dollar for a constant amount of computing time.

 For this example, we shall pay each add operation 3 cyber-dollars.
• Set a saving account with s0 = 0 initially.
• The ith operation has a budget cost of ai= 3, which is the amortized

cost of each operation.
• The account value after the i th add operation is

si = si-1 + ai – ci where ci is the actual cost.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ...

Array
size

1 2 4 8 16 32

ci 1 2 3 1 5 1 1 1 9 1 1 1 1 1 1 1 17 1 1 1 ...

si 2 3 3 5 3 5 7 9 3 5 7 9 11 15 17 19 5 7 9 11 ...

Note: the account value si never goes under 0.

51

52

27

Doubling Strategy Analysis:
The Accounting Method
 We shall pay each add operation ai= 3 cyber-dollars, that is, it will

have an amortized O(1) amortized running time.
 We over-pay each add operation not causing an overflow 2

cyber-dollars.
 An overflow occurs when the array A has 2i elements.
 Thus, doubling the size of the array will require 2i cyber-

dollars.
 These cyber-dollars are at the elements stored in cells 2i−1

through 2i−1.

53

Possible Quiz Problem
For dynamic arrays, instead of doubling the size of the
current array, the current array size is tripled when it is
full. What will be amortized cost of add(e)?
What will is the answer when the new array size is only
50% more than the current array?

54

53

54

28

Summary
 Worst-case complexity: Given an upper

bound at the worst case
 Average complexity: Assume a probability

distribution of all inputs, give the complexity
under this distribution.

 Amortized complexity: Compute the worst
case of the sum of a sequence of operations,
and then divide it by the number of
operations.

55

55

