Ch 01. Analysis of Algorithms

(il

Input Algorithm Output

Acknowledgement: Parts of slides in this presentation come from
the materials accompanying the textbook Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

What's an Algorithm?

o Computer Science is about problem-solving using
computers.

o Software is a solution to some problems.

a Algorithm is a recipe/design inside a software.

o Informally, an algorithm is

a method for solving a well-specified computational
problem.

Problem Algorithm Solution

o Algorithms become more and more important in
digital age.

Homo Deus: A Brief History of Tomorrow
A 2016 top seller book by Historian Yuval Noah Harari

Central thesis:

Organisms are algorithms, and as such homo
sapiens (today’s human) may not be dominant in
the future.

Computers will do much better than organisms.
Many professions will be out-of-date and labors
become less worth.

Harari believes that humanism will push humans to
search for immortality, happiness, and power. A Brief History

Harari suggests the possibility of the replacement of Tomorrow
of humankind with a super-man, i.e. "homo deus",
endowed with abilities such as eternal life and
artificial intelligence.

Algorithms and Data Structures

o An algorithm is a step-by-step procedure for
performing some task in a finite amount of
time.

= Typically, an algorithm takes input data and
produces an output based upon it.

Input Algorithm Output

o A data structure is a systematic way of
organizing and accessing data.

Experimental Studies of Algorithms

o Write a program
implementing the
algorithm

o Run the program with
inputs of varying size
and composition,
noting the time
needed:

o Plot the results

9000

8000 -
7000 +
6000 -

~
("]

£ 5000 -
N
£ 4000 -

F 3000 -
2000 -
1000 -|

04

50
Input Size

100

Limitations of Experiments

o It is necessary to implement the algorithm,

which may be difficult.

o Results may not be indicative of the running
time on other inputs not included in the

experiment.

o In order to compare two algorithms, the same
hardware and software environments must be

used.

Theoretical Analysis

o Uses a high-level description of the algorith
instead of an implementation

o Characterizes running time as a function of
the input size, n
o Takes into account all possible inputs

o Allows us to evaluate the speed of an
algorithm independent of the
hardware/software environment

Pseudocode

o High-level description
of an algorithm

= More structured than
English prose

s Less detailed than a real

Algorithm arrayMax (A, n):
Input: An array A storing n > 1 integers.
Qutput: The maximum element in A.
currentMax < A|0]

program i fori < 1ton—1do
o Preferred notation for if currentMax < Ali] then
describing algorithms currentMax < Alil

return currentMax

a Easy map to real
programming
languages, or to
primitive operations of
CPU

Pseudocode Details

o Control flow o Method call

= if ... then ... [else ...]
= while ... do ...
= for...do ...
= Indentation replaces braces
o Method declaration
Algorithm method (arg [, arg...])
Input ...
Output ...

method (arg [, arg...])
o Return value
return expression

o Expressions:
«Assignment

= Equality testing

n? Superscripts and other

mathematical
formatting allowed

The Random Access Machine
(RAM) Model

A RAM consists of
o A CPU

o An potentially unbounded bank o°
of memory cells, each of which 12
can hold an arbitrary number or °
character

o Memory cells are numbered and

accessing any cell in memory
takes unit time

CPU

Memory

10

o Basic computations
performed by an algorithm

o Identifiable in pseudocode

o Largely independent from the
programming language

o Exact definition not important
(we will see why later)

o Assumed to take a constant
amount of time in the RAM
model

Primitive Operations

o Examples:

Arithmetic
operations

Assigning a value
to a variable

Indexing into an
array

Calling a method

Returning from a
method

11

11

o Seven functions that
often appear in algorithm
analysis:

= Constant ~ 1

= Logarithmic ~ log n
= Linear~n

= N-Log-N ~ nlog n
= Quadratic ~ n?

= Cubic = n’

= Exponential ~ 2"

o In alog-log chart, the
slope of the line
corresponds to the
growth rate

Seven Important Functions

1E+30

1E+28 7
1E+26
1E+24
1E+22 4
1E+20

— Cubic
— Quadratic

— Linear

1E+18

1E+16

T()

1E+14
1E+12

1E+10

1E+8

1E+6

1E+4

1E+2

1E+0

1E+0

1E+2

1E+4 1E+6 1E+8
n

1E+1

n=10%,T(n) = 10v = x=log n, y = log(T(n))

12

12

Functions Graphed Using “Normal” Scale

g =nign_ -
igEssaec - =miiEy

g(n) = n?

g(n) =lgn

13

13

Counting Primitive Operations

o Example: By inspecting the pseudocode, we can determine
the minimum and maximum number of primitive operations
executed by an algorithm, as a function of the input size

Algorithm arrayMax (A, n): How many primitive
Input: An array A storing n > 1 integers. Operations at each line?
Output: The maximum element in A.

currentMax + A0 2
fori < 1ton—1do 3n-1
if currentMax < Ali] then 2(n-1)
currentMax + A[i] 0 to 2(n-1)
return currentMax 1

Minimum: 2 + 3n-1 + 2(n-1) + 1 = 5n
Maximum: 2+ 3n-1 +4(n-1) + 1 =7n-2 14

14

—/
—

Estimating Running Time %

o Algorithm arrayMax executes 7n — 2 primitive
operations in the worst case, 5n in the best case.

Define:

a = Time taken by the fastest primitive operation
b = Time taken by the slowest primitive operation
o Let T(n) be worst-case time of arrayMax. Then
a(sn) <T(n) < b(7n-2)
o Hence, the running time T(n) is bounded by two

linear functions

15

15

Running Time

a The running time of an
algorithm typically grows
with the input size.

o Average case time is often
difficult to determine.

o We focus primarily on the
worst case running time.
= Easier to analyze

= Crucial to applications such as
games, finance and robotics

Running Time

1201

100

801

60

40+

201

O best case
M average case
B worst case

1000 2000 3000 4000
Input Size

16

16

o Changing the hardware/software
environment
» Affects T(n) by a constant factor, but
= Does not alter the growth rate of T(n)

Growth Rate of Running Time

o The linear growth rate of the running time
T(n) is an intrinsic property of algorithm
arrayMax

17

Why Growth Rate Matters

i rLiJSnt|me timeforn+ 1 | timefor2n | timefor4n
clgn clgin+1) |c(gn+1)| c(lgn+2)
cn c(n+1) 2cn 4cn
~cnlgn 2cnilgn+ | 4cnlign+ runtime
cnlgn +en 2cn 4en quadruples
P—— when
cn? ~cn2+2cn 4c n? 16¢ n2 problem
size doubles
cnd ~cnd+3cn? 8cnd 64c nd
c2n c 2n+ c 22 c24n

18

18

Analyzing Recursive Algorithms

o Use a function, T(n), to derive a recurrence
relation that characterizes the running time of
the algorithm in terms of smaller values of 7.

Algorithm recursiveMax(A, n):
Input: An array A storing n > 1 integers.
Quiput: The maximum element in A.
if » = 1 then
return A[0]
return max{recursiveMax(4,n — 1), A[n — 1]}

3 ifn=1
Tn) = { T(n—1)+7 otherwise,

19

19

Constant Factors

1E+26 7————1——

a The growth rate is 1E+24 '--guajragc
ini 1E+22 -+ — Quadratic
mlnlma”y affeCted by 1E+20 -~ - -Linear

= constant factors or 1E+18 | — Linear

lower-order terms 1E+I0
= IOWERO 2 IE+14

o Examples = E+12
e 1E+10
= 10°n+10°is alinear |gig

function 1E+6

= 102n2+10°nis a LE+4
dratic function 1EF2
qua 1E+0
IE+0 1E+2 1E+4 1E+6 1E+8 1E+10

n

20

20

10

Big-Oh Notation

o Given functions f(n) and
g(n), we say that f(n) is
O(g(n)) if there are
positive constants
¢ and n, such that

f(n) < cg(n) for n>n,

o We also say g(n) is an
asymptotic upper bound
for f(n).

10,000

--3n

1,000 +— —2n+10

100 /

1

T
1 10 100
n

Example: 2n + 10 is O(n)
2n+10<cn
(c-2)n>10
n=10/(c-2)
Pick c=3and n,= 10 21

1,000

21

Relatives of Big-Oh

big-Omega

big-Theta

= f(n) is Q(g(n)) if there is a constant ¢ > 0
and an integer constant n, > 1 such that

f(n) > cg(n) for n > n,

= f(n) is ®(g(n)) if there are constants ¢’ > 0 and
c” > 0 and an integer constant n, > 1 such that

c'g(n) < f(n) < c”g(n) for n > n,

Theorem: O is an equivalence relation.
(reflexive, symmetric, and transitive)

22

22

11

Notation

AW,
N /,

Intuition for Asymptotic

big-Oh
= f(n) is O(g(n)) if f(n) is asymptotically
less than or equal to g(n)
big-Omega
» f(n) is Q(g(n)) if f(n) is asymptotically
greater than or equal to g(n)
big-Theta

= f(n) is ©(g(n)) if f(n) is asymptotically
equal to g(n)

23

23

Example Uses of the
Relatives of Big-Oh

m 5n?is Q(n?)
f(n) is Q(g(n)) if there is a constant ¢ > 0 and an integer constant n, > 1
such that f(n) > ¢ g(n) forn > n,
letc=5andn,=1
m 5n?is Q(n)

f(n) is Q(g(n)) if there is a constant ¢ > 0 and an integer constant n, > 1
such that f(n) > ¢ g(n) forn > n,

letc=Tandn,=1
m 5n%is O(n?)

f(n) is O(g(n)) if it is (n?) and O(n?). We have already seen the former,
for the latter recall that f(n) is O(g(n)) if there is a constant ¢ > 0 and an
integer constant N, > 1 such that f(n) <c g(n) for n = n,

Letc=5andn,=1

24

24

12

Big-Oh, Big-Theta, Big Omega Rules

o If f(n) is a polynomial of degree d, then f(n) is
O(nY), i.e.,
1. Drop lower-order terms
2. Drop constant factors
o Use the smallest possible class of functions
= Say “2nis O(n)” instead of “2n is O(n?)”
o Use the simplest expression of the class
= Say “3n+5is O(n)” instead of “3n + 5 is O(n)”

25

25

o(n3): nd

5n3+ 4n Examples
105n3+ 4n? + 6n

O(n2): n?
5n’+ 4n + 6
nZ+ 5
O(log n): log n
log n2
log (n + n3)

26

13

Math you need to Review

a Summations o Properties of powers:
a(b+C) — aba C
o Powers abe = (ab)c
o Logarithms ab /ac = a(b-©)
. b _ alog b
o Proof techniques Lol af'igab

o Basic probability properties of logarithms:
log,(xy) = log,x + log,y
log,, (X/y) = logyx - logpy
log,x? = alogx
log,a = log,a/log,b

27

27

Functions in the order of
faster growth rate

Q Co, (IOg n)cll nCz, C3n
= Cy, C4, Cy, Are positive constants;
m C3 IS @ constant greater than 1.

28

28

14

Little oh

f(n) grows slower than g(n) (or g(n)
grows faster than f(n)) if

lim(f(n) / g(n)) =0,

n— oo

Notation: f(n) = o(g(n))
pronounced "little oh"

29

Little omega

~7f(n) grows faster than g(n) (or g(n) grows
slower than f(n)) if

lim(f(n) / g(n)) = oo,

n-> oo

Notation: f(n) = w (g(n))
pronounced "little omega"®

30

15

Relation Summary:

jim () _ & 3 {0 T a8 = fm =)
e 9(N) 9 3 f(n) =0 (g(n)) — f(M = O(g(m)

Example: Which function grows faster?
(log n)» and nlogn

Example: Some functions are not comparable asymptotically.
f(n) = n(1 - sin(90°n))
g(n) = n(1 — cos(90°n))

31

Possible Quiz Problem

Decide the asymptotical relation of the following function

pairs f and g, i.e., f = 0(g), or f = Q(g), or both?

o f=10n%2 + n(logn), g = 100n(log n)?

o f=100n + 3n2>, g = n¥(log n)

32

32

16

A Case Study in Algorithm Analysis

o Given an array of nintegers,
find the SUbarray, A[Jk] that sum = 13 (the maximum)
maximizes the sum ——

k
Sjk=0aj +aj1 + -+ ag :Zai-
i=j

: 0 [
a In addition to being an . UH SR I] :
4 1L L /
T

interview question for testing
the thinking skills of job
candidates, this maximum
subarray problem also has
applications in pattern
analysis in digitized images.

]

Y
sum =1 sum = -1

A=[-2, -4, 3, -1, 5 6 -7, -2, 4 -3 2]

33

A First (Slow) Solution

Algorithm MaxsubSlow(A):
Input: An n-element array A of numbers, indexed from 1 to n.
Com_pUte the Quiput: The maximum subarray sum of array A.
maximum of every)
¥ m 0 // the maximum found so far

possible subarray for j « 1 ton do
summation A[j, k] of for k « jtondo
the array A 54— 0 // the next partial sum we are computing
separatelyv. fori «+ jto k do

p Y s+ s+ Ali

if s > m then
m 4 s
return m

« The outer loop, for index j, will iterate n times, its middle-inner
loop, for index k, will iterate j ~ n times, and the inner-most
loop, for index i, will iterate j ~ k times.
« Thus, the running time of the MaxsubSlow algorithm is O (n3).
34

An Improved Algorithm

to consider prefix sums

t
Si=a1+ag+-+a=)Y a
=1

o A more efficient way to calculate these summations is

o If we are given all such prefix sums (and assuming

So=0), we can compute any summation s;, in constant

time as
Sjk = Sk — 5j-1
Example: i= 0 1 2 3 4 5 6 7 8
A= 2 4 3 -1 5 6 -7 -2

S= 0 -2 6 -3 4 1 7 0 -2
MaX256,3:SG_52:7_(_6):13

9 10 11
4 -3 2
2 -1 1

35

An Improved Algorithm, cont.

o Compute all the prefix sums -- O(n), time and space
a Then compute all the subarray sums -- O(n2)

Algorithm MaxsubFaster(A):

Input: An n-element array A of numbers, indexed from 1 to n.
Output: The maximum subarray sum of array A.

Sp <— 0 // the initial prefix sum
fori < 1tondo

S; + S;o1+ Ali]
m < 0 //the maximum found so far
for j + 1tondo

for k + j tondo K

5= Sk — Sj_l
if s > m then
m4— s
return m

[—

n iterations

n iterations

| j ~ n iterations

36

36

18

A Linear-Time Algorithm

o Instead of computing prefix sum S, = s, , let us
compute a maximum suffix sum, M,, which is the
maximum of any subarray (including the empty one)
ending at t:

M,; = max{0, .n%axt{sj’t} }
=1

3

a If M; > 0, then it is the summation value for a
maximum subarray that ends at t, and if M, = 0, then
we can safely ignore any subarray that ends at t.

o If we know all the M, values, fort =1, 2, ..., n, then
the solution to the maximum subarray problem would

simply be the maximum of all these values.
37

37

A Linear-Time Algorithm, cont.

o Ift=0,then M, =0.

o Fort = 1, to compute M,, the maximum subarray that ends at t, we
can add A[t] to M, ;. If the result is a positive sum, then we are
done; if it is negative, we let M, be 0, i.e., take the empty subarray,
for there is no non-empty subarray that ends at t with a positive
summation.

o So we can define M, = 0 and recursively

M; = max{0, M,_; + A[t]}

Example: t= 0 1 2 3 4 5 6 7 8 9 10 11

=] 2=l alslela[=2]a3]2
M= 0 0 0 3 2 7 13 6 4 8 5 7
Max = M, = 13.

38

38

19

s

A Linear-Time Algorithm, cont.

Algorithm MaxsubFastest(A):
Input: An n-element array A of numbers, indexed from 1 to n.
Qutput: The maximum subarray sum of array A.

My < 0 // the initial prefix maximum
fort < 1tondo

My + max{0, M; 1 + A[t]}
m <0 //the maximum found so far
fort + 1 tondo

m < max{m, M;}
return m

o The MaxsubFastest algorithm consists of two loops, which each

iterate exactly n times and take O(1) time in each iteration. Thus,
the total running time of the MaxsubFastest algorithm is O(n), time
and space. 39

39

N>

Possible Quiz Problem

Algorithm MaxsubFastest(A4):
Input: An n-element array A of numbers, indexed from 1 to n.
Qutput: The maximum subarray sum of array A.

My <=0 // the initial prefix maximum
for ¢ < 1 ton do

M, « max{0, M,;_1 + A[t]}
m 4 0 //the maximum found so far
fort < 1tondo

m + max{m, M;}
return m

o How to use only a constant number of space, instead of storing M,
forall t?

o How to find the values of j and k if A[j, k] contains the maximum of
every possible subarray summation of the array A in linear time?

40

40

20

n

Summations

if(i): fO+ f2)+--

i=1

+ f(n=D+ f(n)

n

3 2
Zi:n(n+1) Zi2=2n +3n"+n
i=1 2 i=1 6
- k+1 - oatt-1
ZI =0(n"") Za= fora>1
i=1 i=0 a-
41
Summations
> "1/i=0(Inn)
i=1
using Integral of 1/x.
Zlogi =0O(nlogn)
i=1
using Stirling’s approximation
nl=+2zn(L)"
42

21

The Factorial Function

efinition:

nN=1-2-3..... (n—=1)-n

tirling’s approximation:

Nl 270 (L)

or log(n!) = O(n log n)

43

Bounds of Factorial Function

n
logn! =) logz.
=1

fﬂ log xdx < Z logax < f” log(z 4+ 1) dx
1 =1 0

hich gives : ‘
g nlog (%) +1 <logn! < (n+1)log (n+1

'\ 7 I 1 n+1

So 6(2) Sn!ge(n+) L
e €

Similar to n\"

nl~v2mn|—) .
€

)41
€

44

22

Average Case Analysis

o In worst case analysis of time complexity we
select the maximum cost among all possible
inputs of size n.

o In average case analysis, the running time is
taken to be the average time over all inputs
of size n.

= Unfortunately, there are infinite inputs.

= It is necessary to know the probabilities of all
input occurrences.

= The analysis is in many cases complex and
lengthy.

45

What is the average case of
executing “currentMax < A[i]"?
{l

Algorithm arrayMax(A, n):
Input: An array A storing n > 1 integers.
Qutput: The maximum element in A.

currentMax + A[0]
fori < 1ton—1do
if currentMax < A[i] then
currentMax + Ali]
return currentMax

Number of Assignments: the worst case is n. If numbers
are randomly distributed, then the average case is 1+1/2
+1/3+1/4+ ...+ 1/n = 0O(log n).

This is because A[i] has only 1/i probability to be the max
of A[1], A[2], ..., A[i], under the assumption that all
numbers are randomly distributed.

46

Amortized Analysis

o The amortized running time of an operation within a
series of operations is the worst-case running time of
the series of operations divided by the number of
operations.

o Example: A growable array, S. When needing to grow:
a. Allocate a new array B of larger capacity.
b. Copy A[i] to B[i], fori =0, ..., n— 1, where n is size of A.
c. Let A = B, that is, we use B as the array now supporting A.

+ I IO <)
B | | | | B _ | I I A _7“-77 I I I

(a) (b) (c) 47

47
Dynamic Array Description
o Let add(e) be the operation Py ——
gorithm add(e
that adds element e at the if = A length then
end of the array B « new array of
o When the array is full, we PP PIE
replace the array with a B[i] < A[i]
larger one A«B
nen+1
o But how large should the Aln-1]< e
new array be?
= Incremental strategy: increase
the size by a constant ¢
= Doubling strategy: double the
size
48
48

24

Comparison of the Strategies

o We compare the incremental strategy and
the doubling strategy by analyzing the total
time T(n) needed to perform a series of n
add operations

o We assume that we start with an empty list
represented by a growable array of size 1

o We call amortized time of an add operation
the average time taken by an add operation
over the series of operations, i.e., T(n)/n.

49

Incremental Strategy Analysis

times, where c is a constant

proportional to
Tn)=n+c+2c+3c+4c+...+kc
=n+c(1+2+3+..+Kk)
=n+ ck(k+ 1)/2
o Since c is a constant, T(n) is O(n + k?), i.e., O(n?)

o Thus, the amortized time of an add operation,
T(n)/n, is O(n).

o Over n add operations, we replace the array k = n/c

o The total time T(n) of a series of n add operations is

50

25

Doubling Strategy Analysis:
The Aggregate Method

o We replace the array k = log, n
times

o The total time T(n) of a series of n
push operations is proportional to
N+ 1+2+4+8+ . +2k=
n+2ktl—1 =
3n-1
o T(n) is O(n).
o The amortized time of an add
operation is O(1).

geometric series

51

51
Doubling Strategy Analysis:
The Accounting Method
u We view the computer as a coin-operated appliance that requires
one cyber-dollar for a constant amount of computing time.
u For this example, we shall pay each add operation 3 cyber-dollars.
Set a saving account with s, = 0 initially.
The it operation has a budget cost of a,= 3, which is the amortized
cost of each operation.
The account value after the it add operation is
S$i=S;.; ta—C; wherec is the actual cost.
i|1]12|3|4|5[6(7|8|9 (10|11 |12 (13|14 |15 |16 |17 |18 |19 |20]..
Array |1 (2 | 4 8 16 32
size
cGl1 |2 (3 (1 (S|t |1 {1 (9 |1 |1 [1 (1 |1 |1 (1 (171 |1 |1
S12(3(3[5(3|5]7(9]3 [5 |7 [9 |11 [15[17 195 |7 [9 |11]..
Note: the account value s; never goes under 0. 52
52

26

Doubling Strategy Analysis:
The Accounting Method

o We shall pay each add operation a,= 3 cyber-dollars, that is, it will
have an amortized O(1) amortized running time.

= We over-pay each add operation not causing an overflow 2
cyber-dollars.

= An overflow occurs when the array A has 2 elements.

= Thus, doubling the size of the array will require 2! cyber-

dollars.
= These cyber-dollars are at the elements stored in cells 2i-1
through 2i-1.
OOO®O
@ OOOO
CITITTTT]

0o 1 2 3 4 5 6 7

®
(b) ©

0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

53

Possible Quiz Problem

For dynamic arrays, instead of doubling the size of the
current array, the current array size is tripled when it is
full. What will be amortized cost of add(e)?

What will is the answer when the new array size is only
50% more than the current array?

54

54

Summary

o Worst-case complexity: Given an upper
bound at the worst case

o Average complexity: Assume a probability
distribution of all inputs, give the complexity
under this distribution.

o Amortized complexity: Compute the worst
case of the sum of a sequence of operations,
and then divide it by the number of
operations.

55

55

28

