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Recursion vs Induction

CS3330: Algorithms
The University of Iowa
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Recursion
 Recursion means defining something, such as a 

function, in terms of itself
 For example, let f(x) = x!

 We can define f(x) as 
f(x) = if x < 2 then 1 else x * f(x-1)

 Recursion is a powerful problem-solving technique 
that often produces very clean solutions to even 
complex problems.

 Recursive solutions can be easier to understand and to 
describe than iterative solutions.
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Recursion example
 Sequences are functions from natural numbers to reals: 

f(i) = ai

a0, a1, a2, a3, …, an.

Example: Find f(1), f(2), f(3), and f(4), 
where f(0) = 1, and

f(n+1) = f(n)2 + f(n) + 1

f(1) = f(0)2 + f(0) + 1 = 12 + 1 + 1 = 3
f(2) = f(1)2 + f(1) + 1 = 32 + 3 + 1 = 13
f(3) = f(2)2 + f(2) + 1 = 132 + 13 + 1 = 183
f(4) = f(3)2 + f(3) + 1 = 1832 + 183 + 1 = 33673

Iterative vs. Recursive

 Iterative
1 if n=0

factorial(n) = 
n x (n-1) x (n-2) x … x 2 x 1 if n>0

 Recursive

1 if n=0
 factorial(n) = 

n x factorial(n-1) if n>0

Function calls itself

Function does NOT
calls itself
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Iterative Algorithm

factorial(n) {
i = 1
factN = 1
while (i <= n)

factN = factN * i
i = i + 1

return factN
}

• The iterative solution is very 
straightforward.  We simply 
loop through all the integers 
between 1 and n and 
multiply them together.

• In general, iterative solution 
is computed from small to 
big.

Recursive Algorithm

factorial(n) {
if (n = 0)

return 1
else

return n*factorial(n-1)
end if

}

Note how much simpler the 
code for the recursive 
version of the algorithm is 
as compared with the 
iterative version 

We have eliminated the loop 
and implemented the 
algorithm with one ‘if’ 
statement.
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Recursion Breakdown
 1. Base cases:

 Always have at least one case that can be 
solved without using recursion.

 2. Recursive cases:
 Any recursive call must make progress 

toward a base case.

Recursion Breakdown
 To see how the recursion works, let’s break down the 

factorial function to solve factorial(3)
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How Recursion Works
 A recursive solution solves a problem by solving a 

smaller instance of the same problem.
 It solves this new problem by solving an even smaller 

instance of the same problem.
 Eventually, the new problem will be so small that its 

solution will be either obvious or known.
 This solution will lead to the solution of the original 

problem.

How Recursion Works
 To truly understand how recursion works we need to 

first explore how any function call works.
 When a program calls a subroutine (function) the 

current function must suspend its processing.
 The called function then takes over control of the 

program.
 When the function is finished, it needs to return to 

the function that called it.
 The calling function then ‘wakes up’ and continues 

processing.
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How Recursion Works
 To do this we use a stack.
 Before a function is called, all relevant data is stored 

in a stackframe.
 This stackframe is then pushed onto the system stack.
 After the called function is finished, it simply pops the 

stackframe off the stack to return to the original state.
 By using a stack, we allow functions call other 

functions (including themselves) which can call other 
functions, etc.

Limitations of Recursion
 The main disadvantage of programming recursively is 

that, while it makes it is easier to write simple and 
elegant programs, it also makes it easier to write 
inefficient ones. 

 When we use recursion to solve problems, we are 
interested exclusively with correctness, and not at all 
with efficiency. Consequently, our simple, elegant 
recursive algorithms may be inherently inefficient. 

11

12



Lists and Iterators 3/28/2019

7

Fibonacci sequence 

 fibonacci(0) = 0
 fibonacci(1) = 1
 fibonacci(n) =  fibonacci(n-1) + 

fibonacci(n-2)   for n>1

 This definition is a little different than the previous 
recursive definitions because  it has two base cases, 
not just one; in fact, you can have as many as you 
like. 

 In the recursive case, there are two recursive calls, 
not just one. There can be as many as you like. 

14

Fibonacci sequence
 Definition of the Fibonacci sequence

 Non-recursive:

 Recursive: F(n) = F(n-1) + F(n-2)

or: F(n+2) = F(n+1) + F(n)

 Must always specify base case(s)!
 F(0) = 0, F(1) = 1

 Note that some will use F(1) = 1, F(2) = 1
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Fibonacci sequence in Java
long Fibonacci(int n) {

if ( n == 0 ) return 0;

else if ( n == 1) return 1;

else return Fibonacci(n-2) + Fibonacci(n-1);

}

long Fibonacci2(int n) {

return (long) ((Math.pow((1.0+Math.sqrt(5.0)),n)-

Math.pow((1.0-Math.sqrt(5.0)),n)) /

(Math.sqrt(5) * Math.pow(2,n)));

}

16

Exponential Time Algorithms
 Consider the recursive Fibonacci generator
 How many recursive calls does it make?

 F(1): 1
 F(2): 1
 F(3): 3
 F(4): 5
 F(5): 9
 F(10): 109
 F(20): 13,529
 F(30): 1,664,079
 F(40): 204,668,309
 F(50): 25,172,538,049
 F(100): 708,449,696,358,523,830,149  7 * 1020

 At 1 billion recursive calls per second (generous), this would take over 22,000 
years

fib(6)

Fib(5) Fib(4)

Fib(4) Fib(3) Fib(3) Fib(2)

Fib(3) Fib(2) Fib(2) Fib(1)
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How many additions used by 
Fibonacci(n)?

long Fibonacci(int n) {

if ( n == 0 ) return 0;

else if ( n == 1) return 1;

else return Fibonacci(n-2) + Fibonacci(n-1);

}

Solve it by recursion: let a(n) be the number of 
additions used by Fibonacci(n).

a(0) = 0

a(1) = 0

a(n) = a(n-2) + a(n-1) + 1.

Exercise C-4.3: a(n) = Fibonacci(n+1)-1.

Exponential Space Algorithm!!!
int factorial(int n) {
if (n == 0) return 1;
else return n * factorial(n-1);

}

There is very little overhead in calling this function, as it has only 
one word of local memory, for the parameter n. However, when 
we try to compute factorial(20), there will end up being 21 words 
of memory allocated - one for each invocation of the function.

The input takes O(log n) space, but the code takes O(n), 
exponential in terms of log n.
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Limitations of Recursion
 Multiple recursive calls may involve extensive 

overhead because they use calls.
 When a call is made, it takes time to build a 

stackframe and push it onto the system stack.
 Conversely, when a return is executed, the 

stackframe must be popped from the stack and the 
local variables reset to their previous values – this 
also takes time.

The overheads that may be associated 
with a function call are: 
 Space:    Every invocation of a function call may 

require space for parameters and local variables, and 
for an indication of where  to return when the function 
is finished. Typically this space (allocation record) is 
allocated on the stack and is released automatically 
when the function returns. Thus, a recursive algorithm 
may need space proportional to the number of nested 
calls to the same function.

 Time:     The operations involved in calling a function -
allocating, and later releasing, local memory, copying 
values into the local memory for the parameters, 
branching to/returning from the function - all 
contribute to the time overhead. 
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 Recursion is based upon calling the same function 
over and over, whereas iteration simply `jumps back' 
to the beginning of the loop. A function call is often 
more expensive than a jump. 

 In general, there is no reason to incur the overhead of 
recursion when its use does not gain anything.

 Recursion is truly valuable when a problem has no 
simple iterative solution.

Summary

Hanoi Tower - Instructions
1. Transfer all the disks from pole A to pole B.

2. You may move only ONE disk at a time.

3. A large disk may not rest on top of a smaller one 
at anytime.

A B C

3

2

1
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Try this one!

A B C

2

1

3

4

Shortest number of moves??

And this one

A B C

2

1

3

4

5

Shortest number of moves??

23

24



Lists and Iterators 3/28/2019

13

Now try this one!

A B C

6

5

4

3

2

1

Shortest number of moves??

How to solve Tower of Hanoi of n disks?
 If n = 1, “move disk 1 from A to B”, done.
 If n > 1,  

1. Solve the Tower of Hanoi of n-1 disks, from A to C;
2. “move disk n from A to B”
3. Solve the Tower of Hanoi of n-1 disks, from C to B.

26

static Hanoi ( int n, char A, char B, char C )  {
if (n==1)  printline(“move disk 1 from ” + A + “ to “ + B); 
else {

Hanoi(n-1, A, C, B);
printline(“move disk “ + n + “ from “ + A + “ to “ + B);
Hanoi(n-1, C, B, A);

}
}

Counting the 
moves:
Let f(n) be the 
number of moves 
for n disks.

f(1) = 1;
f(n) = 2f(n-1) + 1.

25
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 Number of Disks Number of Moves 
1 f(1) = 1
2 f(2) = 2*1 + 1 = 3 
3 f(3) = 2*3 + 1 = 7
4 f(4) = 2*7 + 1 = 15
5 f(5) = 2*15 + 1 = 31
6 f(6) = 2*31 + 1 = 63

Let f(n) be the least number of moves for n disks.

f(1) = 1;
f(n) = 2f(n-1) + 1.

 Base step: n = 1.
 Left = f(1) = 1; 
 Right = 21 - 1 = 1

 Induction hypothesis: f(n-1) = 2n-1 - 1.
 Inductive step:

 Left = f(n) = 2f(n-1) + 1 = 2(2n-1 - 1) + 1 = 2n - 1.
 Right = 2n - 1.

28

Let f(n) be the number of moves for n disks.
f(1) = 1;
f(n) = 2f(n-1) + 1.

Prove:  f(n) = 2n - 1.
By induction.

27
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Exponential Growth
So the formula for finding the number of steps it takes 

to transfer n disks from post A to post C is:

2n - 1
 If n = 64, the number of moves of single disks is 2 to 

the 64th minus 1, or 18,446,744,073,709,551,615 
moves! If one worked day and night, making one 
move every second it would take slightly more than 
580 billion years to accomplish the job! - far, far 
longer than some scientists estimate the solar system 
will last.

Main Benefits of Recursive Algorithms

 Invariably recursive functions are clearer, simpler, 
shorter, and easier to understand than their non-
recursive counterparts.

 The program directly reflects the abstract solution 
strategy (algorithm). 

 From a practical software engineering point of view 
these are important benefits, greatly enhancing the 
cost of maintaining the software. 
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Consider the following program for 
computing the Fibonacci function. 
int s1, s2 ;
int fib (int n) {

if (n == 0) return 0;
else if (n == 1) return 1;
else {

s1 = fib(n-1);
s2 = fib(n-2);
return s1 + s2;

}
}

fib(2) = ?

fib(3) = ?

fib(4) = ?

The main thing to note here is that the variables that will 
hold the intermediate results, S1 and S2, have been 
declared as global variables.

. This is a mistake. Although 
the function looks just fine, 
its correctness crucially 
depends on having local 
variables for storing all the 
intermediate results. As 
shown, it will not correctly 
compute the Fibonacci 
function for n=4 or larger. 
However, if we move the 
declaration of s1 and s2 
inside the function, it works 
perfectly. 

 This sort of bug is 
very hard to find, and 
bugs like this are 
almost certain to 
arise whenever you 
use global variables 
to store intermediate 
results of a recursive 
function.
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From Recursion to Iteration
 Most recursive algorithms can be translated, by a fairly 

mechanical procedure, into iterative algorithms. 
Sometimes this is very straightforward - for example, 
most compilers detect a special form of recursion, 
called tail recursion, and automatically translate into 
iteration without your knowing. Sometimes, the 
translation is more involved: for example, it might 
require introducing an explicit stack with which to 
“fake” the effect of recursive calls. 

What is Tail Recursion?
 Recursive methods are either

 Tail recursive
 Nontail recursive

 Tail recursive method has the recursive call as the last 
operation in the method.

 Recursive methods that are not tail recursive are 
called non-tail recursive.

33

34



Lists and Iterators 3/28/2019

18

Is Factorial Tail Recursive?
 Is the method facto a tail recursive method?

int facto(int x){

if (x==0)

return 1;

else

return x*fact(x-1);

}

 When returning back from a recursive call, there is still 
one pending operation, multiplication.

 Therefore, facto is a non-tail recursive method.

Another Example
 Is this method tail recursive?

void tail(int i) {

if (i>0) {

system.out.print(i+"")

tail(i-1)

}

It is tail recursive!

35
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Third Example
 Is the following program tail recursive?

void prog(int i) {

if (i>0) {

prog(i-1);

System.out.print(i+"");

prog(i-1);

}

}

 No, because there is an earlier recursive call, which is not the last 
operation.

 In tail recursion, the recursive call should be the last operation, 
and there should be no earlier recursive calls whether direct or 
indirect.

Advantage of Tail Recursive Method
 Tail Recursive methods are easy to convert to 

iterative.

 Smart compilers can detect tail recursion and convert 
it to iterative to optimize code

 Used to implement for loops in languages that do not 
support loop structures explicitly (e.g.  prolog)

void tail(int i){
if (i>0) {

system.out.println(i+"");
tail(i-1)

}
}

void iterative(int i){
for (;i>0;i--)

System.out.println(i+"");
}

37
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Converting Non-tail to Tail Recursive
 A non-tail recursive method can be converted to a tail-recursive 

method by means of an "auxiliary" parameter used to form the 
result.

 The technique is usually used in conjunction with an "auxiliary" 
function. This is simply to keep the syntax clean and to hide the 
fact that auxiliary parameters are needed.

int fact_aux(int n, int result) {
if (n == 0) return result; 
return fact_aux(n - 1, n * result)

}

int fact(n) {
return fact_aux(n, 1);

}
int fact(int n){

if (n==0) return 1;
else return n*fact(n-1);

}

Converting Non-tail to Tail Recursive
 A tail-recursive Fibonacci method can be implemented by using 

two auxiliary parameters for accumulating results.

int fib_aux ( int i , int nextResult, int result)

{

if (i == 0)

return result;

return fib_aux(i - 1, nextResult + result, nextResult);

}

To calculate fib(n) , call fib_aux(n,1,0)

auxiliary parameters!

39
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Patterns for Converting Tail Recursive 
to Iterative

F(x) {
if (P(x))return G(x);
S(x);
return F(H(x));

}

 If P(x) is true, the value of F(x) is the value of some other 
function G(x). Otherwise, the value of F(x) is the value of the 
function F on some other value, H(x)

F(x) {
while (!P(x)) {

S(x);
x = H(x);

}
return G(x);

}

Converting Tail Recursive  to Iterative

the function F is fact_aux
x  (n, result), tuple of the two parameters 
P(n, result)  (n == 1) 
G(n, result)  result 
H(n, result)  (n - 1, n * result)
S(n, result)  nothing

int fact_aux(int n, int result) {
if (n == 1) return result; 
return fact_aux(n - 1, n * result);

}

F(x) {
if (P(x))  return G(x);
S(x);
return F(H(x));

}

int fact_iter(int n, int result) { 
while (n != 1) { 

(n, result) = (n – 1, n * result); 
}
return result;

}

F(x) {
while (!P(x)) {

S(x);
x = H(x);

}
return G(x);

}

41
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Converting Tail Recursive  to Iterative

the function F is fib_aux
x  (n, nRes, res), tuple of the three parameters 
P(n, nRes, res)  (n == 0) 
G(n, nRes, res)  res 
H(n, nRes, res)  (n - 1, nRes + res, nRes)
S(n, result)  nothing

int fib_aux ( int n, int nRes, int res){
if (n == 0)return res;
return fib_aux(n - 1, nRes + res, nRes);

}

F(x) {
if (P(x))  return G(x);
S(x);
return F(H(x));

}

int fib_iter(int n, int nRes, int res) { 
while (n != 0) { 

(n, nRes, res) = (n – 1, nRes + res, nRes); 
}
return res;

}

F(x) {
while (!P(x)) {

S(x);
x = H(x);

}
return G(x);

}

Recursive Selection Sort
void ssort_rec(int n, int A[]) {

if (n <= 1) return; 
int i = arg_max(n, A);  // find index of max in A
swap(A, i, n-1);        // swap elements at i and n-1.
ssort_rec(n – 1, A);  

}

Quiz Questions:

ssort_rec is tail-recursion!!!
What is the result of removing this tail-recursion?

Suppose arg_max(i, A[]) takes O(i) time.
What is the time complexity of ssort_rec(n, A)?
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Recursion
 Recursion is more than just a programming 

technique. It has two other uses in computer 
science and software engineering, namely: 

 As a way of describing, defining, or specifying 
things. 

 As a way of designing solutions to problems 
(divide and conquer, dynamic programming, 
etc). 

46

Defining sets via recursion
 Same as mathematical induction:

 Base case (or basis step)
 Recursive step

 Example: the set of positive integers
 Basis step: 1  S
 Recursive step: if x  S, then x+1  S

45
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Defining sets via recursion
 Give recursive definitions for:

a) The set of odd positive integers
 1  S
 If x  S, then x+2  S

b) The set of positive integer powers of 3
 3  S
 If x  S, then 3*x  S

c) The set of polynomials with integer coefficients
 0  S
 If p(x)  S, then p(x) + cxn  S

 c  Z, n  Z and n ≥ 0

48

Defining strings via recursion
 Terminology

  is the empty string: “”
  is the set of all letters: { a, b, c, …, z }
 The set of letters can change depending on the 

problem
 We can define a set of strings * as follows

 Base step:   *
 If w  * and x  , then wx  *
 Thus, * s the set of all the possible strings that 

can be generated with the alphabet

47
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Defining strings via recursion
 Let  = { 0, 1 }
 Thus, * is the set of all binary all binary 

strings
 Or all possible computer files

50

String length via recursion
 How to define string length recursively?

 Basis step: len() = 0
 Recursive step: len(wx) = len(w) + 1 if w  * and x 


 Example: len(“aaa”)
 len(“aaa”) = len(“aa”) + 1
 len(“aa”) = len(“a”) + 1
 len(“a”) = len(“”) + 1
 len(“”) = 0
 Result: 3

49
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Strings via recursion example
 Given a string x = a1a2…an, xR stands for its reversal: 

xR = anan-1…a1. Eg. x = abc, xR = cba.
 A string x is a palindrome if x = xR.  Eg. x = aba.
 Give a recursive definition for P, the set of string that 

are palindromes
 We will define set P, which is the set of all palindromes

 Basis step:   P
 Second basis step: x  P when x  
 Recursive step: xpx  P if x   and p  P

How many binary strings of length n 
that do not contain the pattern 11?
 n = 0: 1 string (, the empty string)
 n = 1: 2 strings (0 and 1)
 n = 2: 3 strings (00, 01, 10)
 n = 3: 5 strings (000, 001, 010, 100, 101)
 n = 4: 8 strings (0000, 0001, 0010, 0100, 1000, 0101, 

1001, 1010)

 Any pattern?
 A Fibonacci sequence!

52
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How many binary strings of length n 
that do not contain the pattern 11?
 n = 2: 3 strings (00, 01, 10)
 n = 3: 5 strings (000, 001, 010, 100, 101)
 n = 4: 8 strings (0000, 0001, 0010, 0100, 1000, 0101, 

1001, 1010)

 The strings of n=4 can be divided into two classes: 
 X = { 0000, 0001, 0010, 0100, 0101 } and 
 Y = { 1000, 1001, 1010 }
 X can be obtained from n = 3: adding a leading 0
 Y can be obtained from n = 2: adding leading 10.

53

How many binary strings of length n 
that do not contain the pattern 11?
 Let Sn be the set of binary strings of length n that do 

not contain the pattern 11.
 For any string x in Sn-1, y = 0x is a string of Sn.
 For any string x in Sn-2, z = 10x is a string of Sn.
 Any string of Sn is either y or z above.
 Hence Sn = 0Sn-1  10Sn-2,  or  |Sn| = |Sn-1| + |Sn-2|
 From  |S0| = 1, |S1| = 2, we can compute any |Sn|. 

54
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Recursive Functions on Natural Numbers
 The set of natural numbers

 Basis step: 0  N
 Recursive step: if x  N, then x+1  N

 Define plus on N:
 Basis step: plus(0, y) = y for all y  N
 Recursive step: plus(x+1, y) = plus(x, y)+1 for all x, y  N

 Prove that plus(x, y) = x+y.
 Induction on x:

 Basis step x=0: plus(0, y) = 0+y for all y  N
 Induction hypothesis: plus(x, y) = x+y
 Recursive step x = u+1: plus(u+1, y) = (u+1)+y for all u, y  N
 Left  = plus(u+1, y) = plus(u, y)+1 = u+y+1 
 Right = (u+1)+y = u+y+1

 This induction proof is also called “structural induction”.

56

Recursive Functions on Natural Numbers
 Define plus on N:

 Basis step: plus(0, y) = y for all y  N
 Recursive step: plus(x+1, y) = plus(x, y)+1 for all x, y  N

 Define mult on N:
 Basis step: mult(0, y) = 0 for all y  N
 Recursive step: mult(x+1, y) = plus(mult(x, y), y) for all x, y 

N
 Prove that mult(x, y) = x*y.
 Induction on x:

 Basis step x=0: mult(0, y) = 0*y for all y  N
 Induction hypothesis: mult(x, y) = x*y
 Recursive step x = u+1: mult(u+1, y) = (u+1)*y for all u, y  N
 Left  = mult(u+1, y) = plus(mult(u, y), y) = u*y+y
 Right = (u+1)*y = u*y+y
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Recursion Functions on Strings
 Given a string x = a1a2…an , xR stands for its reversal: 

xR = anan-1…a1. Eg. x = abc, xR = cba.
 How to define xR recursively? 

 Base step:   *
 Recursive step: If w  * and x  , then wx  *

 Basis step: R = 
 Recursive step: (wx)R = x(w)R if x   and w  * 

 Theorem: (aw)R = (w)Ra for all a  , w  *.

58

How to prove (aw)R = (w)Ra ? 
 Base step:   *
 Recursive step: If w  * and x  , then wx  *

 Basis step: R = 
 Recursive step: (wx)R = x(w)R if x   and w  * 

 Structural Induction Proof:
 Basis case w = : (a)R = ()Ra    (easy)
 Induction hypothesis: (aw)R = (w)Ra
 Inductive case: (a(wx))R = (wx)R a if x   and w  *
 Left = (a(wx))R = ((aw)x)R = x(aw)R = x(w)Ra.
 Right = (wx)Ra = (x(w)R)a = x(w)Ra.
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How to prove ((w)R)R = w ? 
 Base step:   *
 Recursive step: If w  * and x  , then wx  *

 Basis step: R = 
 Recursive step: (wx)R = x(w)R if x   and w  * 

 Structural Induction Proof:
 Basis case: (()R)R =  (easy)
 Induction hypothesis: ((w)R)R = w
 Inductive case: ((wx)R)R = wx if x   and w  *
 Lemma: (aw)R = (w)Ra
 Left = ((wx)R)R = (x(w)R)R = ((w)R)Rx = wx.
 Right = wx.
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How to prove len((w)R) = len(w) ? 
 Basis step: R = 
 Recursive step: (wx)R = x(w)R if x   and w  * 
 Basis step: len() = 0
 Recursive step: len(wx) = len(w) + 1 if w  * and x  

 Structural Induction Proof:
 Basis case: len(()R) = len()    (easy)
 Induction hypothesis: len((w)R) = len(w) 
 Inductive case: len((wx)R) = len(wx) if x   and w  *
 Lemma: len(aw) = 1+len(w) if a   and w  *
 Left = len((wx)R) = len(x(w)R) = 1+len((w)R) = 1+len(w).
 Right = len(wx) = len(w)+1.
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The append function on strings 
 Basis step: len() = 0
 Recursive step: len(wx) = len(w) + 1 if w  * and x  

 The function app(x, y) “appends” x and y together. 
 app(“abc”, “xyz”) = “abcxyz”.

 Basis step: app(v, ) = v if v  *
 Recursive step: app(v, wx) = app(v, w)x if v, w  * and 

x  .

 How to prove len(app(v, w)) = len(v)+len(w) ? 
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How to prove len(app(v, w)) = len(v)+len(w) ? 

 Basis step: len() = 0
 Recursive step: len(wx) = len(w) + 1 if w  * and x  
 Basis step: app(v, ) = v if v  *
 Recursive step: app(v, wx) = app(v, w)x if v, w  * and x  .

 Structural Induction Proof:
 Basis case: len(app(v, )) = len(v)+len()    (easy)
 Induction hypothesis: len(app(v, w)) = len(v)+len(w)
 Inductive case: len(app(v, wx)) = len(v)+len(wx) 
 Lemma: len(aw) = 1+len(w) if a   and w  *
 Left = len(app(v, wx)) = len(app(v, w)x) = len(app(v, w))+1  =

len(v)+len(w)  + 1
 Right = len(v)+len(wx) = len(v)+len(w) + 1.
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