
Lists and Iterators 3/28/2019

1

1

Recursion vs Induction

CS3330: Algorithms
The University of Iowa

2

Recursion
 Recursion means defining something, such as a

function, in terms of itself
 For example, let f(x) = x!

 We can define f(x) as
f(x) = if x < 2 then 1 else x * f(x-1)

 Recursion is a powerful problem-solving technique
that often produces very clean solutions to even
complex problems.

 Recursive solutions can be easier to understand and to
describe than iterative solutions.

1

2

Lists and Iterators 3/28/2019

2

Recursion example
 Sequences are functions from natural numbers to reals:

f(i) = ai

a0, a1, a2, a3, …, an.

Example: Find f(1), f(2), f(3), and f(4),
where f(0) = 1, and

f(n+1) = f(n)2 + f(n) + 1

f(1) = f(0)2 + f(0) + 1 = 12 + 1 + 1 = 3
f(2) = f(1)2 + f(1) + 1 = 32 + 3 + 1 = 13
f(3) = f(2)2 + f(2) + 1 = 132 + 13 + 1 = 183
f(4) = f(3)2 + f(3) + 1 = 1832 + 183 + 1 = 33673

Iterative vs. Recursive

 Iterative
1 if n=0

factorial(n) =
n x (n-1) x (n-2) x … x 2 x 1 if n>0

 Recursive

1 if n=0
 factorial(n) =

n x factorial(n-1) if n>0

Function calls itself

Function does NOT
calls itself

3

4

Lists and Iterators 3/28/2019

3

Iterative Algorithm

factorial(n) {
i = 1
factN = 1
while (i <= n)

factN = factN * i
i = i + 1

return factN
}

• The iterative solution is very
straightforward. We simply
loop through all the integers
between 1 and n and
multiply them together.

• In general, iterative solution
is computed from small to
big.

Recursive Algorithm

factorial(n) {
if (n = 0)

return 1
else

return n*factorial(n-1)
end if

}

Note how much simpler the
code for the recursive
version of the algorithm is
as compared with the
iterative version 

We have eliminated the loop
and implemented the
algorithm with one ‘if’
statement.

5

6

Lists and Iterators 3/28/2019

4

Recursion Breakdown
 1. Base cases:

 Always have at least one case that can be
solved without using recursion.

 2. Recursive cases:
 Any recursive call must make progress

toward a base case.

Recursion Breakdown
 To see how the recursion works, let’s break down the

factorial function to solve factorial(3)

7

8

Lists and Iterators 3/28/2019

5

How Recursion Works
 A recursive solution solves a problem by solving a

smaller instance of the same problem.
 It solves this new problem by solving an even smaller

instance of the same problem.
 Eventually, the new problem will be so small that its

solution will be either obvious or known.
 This solution will lead to the solution of the original

problem.

How Recursion Works
 To truly understand how recursion works we need to

first explore how any function call works.
 When a program calls a subroutine (function) the

current function must suspend its processing.
 The called function then takes over control of the

program.
 When the function is finished, it needs to return to

the function that called it.
 The calling function then ‘wakes up’ and continues

processing.

9

10

Lists and Iterators 3/28/2019

6

How Recursion Works
 To do this we use a stack.
 Before a function is called, all relevant data is stored

in a stackframe.
 This stackframe is then pushed onto the system stack.
 After the called function is finished, it simply pops the

stackframe off the stack to return to the original state.
 By using a stack, we allow functions call other

functions (including themselves) which can call other
functions, etc.

Limitations of Recursion
 The main disadvantage of programming recursively is

that, while it makes it is easier to write simple and
elegant programs, it also makes it easier to write
inefficient ones.

 When we use recursion to solve problems, we are
interested exclusively with correctness, and not at all
with efficiency. Consequently, our simple, elegant
recursive algorithms may be inherently inefficient.

11

12

Lists and Iterators 3/28/2019

7

Fibonacci sequence

 fibonacci(0) = 0
 fibonacci(1) = 1
 fibonacci(n) = fibonacci(n-1) +

fibonacci(n-2) for n>1

 This definition is a little different than the previous
recursive definitions because it has two base cases,
not just one; in fact, you can have as many as you
like.

 In the recursive case, there are two recursive calls,
not just one. There can be as many as you like.

14

Fibonacci sequence
 Definition of the Fibonacci sequence

 Non-recursive:

 Recursive: F(n) = F(n-1) + F(n-2)

or: F(n+2) = F(n+1) + F(n)

 Must always specify base case(s)!
 F(0) = 0, F(1) = 1

 Note that some will use F(1) = 1, F(2) = 1

   
n

nn

nF
25

5151
)(






13

14

Lists and Iterators 3/28/2019

8

15

Fibonacci sequence in Java
long Fibonacci(int n) {

if (n == 0) return 0;

else if (n == 1) return 1;

else return Fibonacci(n-2) + Fibonacci(n-1);

}

long Fibonacci2(int n) {

return (long) ((Math.pow((1.0+Math.sqrt(5.0)),n)-

Math.pow((1.0-Math.sqrt(5.0)),n)) /

(Math.sqrt(5) * Math.pow(2,n)));

}

16

Exponential Time Algorithms
 Consider the recursive Fibonacci generator
 How many recursive calls does it make?

 F(1): 1
 F(2): 1
 F(3): 3
 F(4): 5
 F(5): 9
 F(10): 109
 F(20): 13,529
 F(30): 1,664,079
 F(40): 204,668,309
 F(50): 25,172,538,049
 F(100): 708,449,696,358,523,830,149  7 * 1020

 At 1 billion recursive calls per second (generous), this would take over 22,000
years

fib(6)

Fib(5) Fib(4)

Fib(4) Fib(3) Fib(3) Fib(2)

Fib(3) Fib(2) Fib(2) Fib(1)

15

16

Lists and Iterators 3/28/2019

9

17

How many additions used by
Fibonacci(n)?

long Fibonacci(int n) {

if (n == 0) return 0;

else if (n == 1) return 1;

else return Fibonacci(n-2) + Fibonacci(n-1);

}

Solve it by recursion: let a(n) be the number of
additions used by Fibonacci(n).

a(0) = 0

a(1) = 0

a(n) = a(n-2) + a(n-1) + 1.

Exercise C-4.3: a(n) = Fibonacci(n+1)-1.

Exponential Space Algorithm!!!
int factorial(int n) {
if (n == 0) return 1;
else return n * factorial(n-1);

}

There is very little overhead in calling this function, as it has only
one word of local memory, for the parameter n. However, when
we try to compute factorial(20), there will end up being 21 words
of memory allocated - one for each invocation of the function.

The input takes O(log n) space, but the code takes O(n),
exponential in terms of log n.

17

18

Lists and Iterators 3/28/2019

10

Limitations of Recursion
 Multiple recursive calls may involve extensive

overhead because they use calls.
 When a call is made, it takes time to build a

stackframe and push it onto the system stack.
 Conversely, when a return is executed, the

stackframe must be popped from the stack and the
local variables reset to their previous values – this
also takes time.

The overheads that may be associated
with a function call are:
 Space: Every invocation of a function call may

require space for parameters and local variables, and
for an indication of where to return when the function
is finished. Typically this space (allocation record) is
allocated on the stack and is released automatically
when the function returns. Thus, a recursive algorithm
may need space proportional to the number of nested
calls to the same function.

 Time: The operations involved in calling a function -
allocating, and later releasing, local memory, copying
values into the local memory for the parameters,
branching to/returning from the function - all
contribute to the time overhead.

19

20

Lists and Iterators 3/28/2019

11

 Recursion is based upon calling the same function
over and over, whereas iteration simply `jumps back'
to the beginning of the loop. A function call is often
more expensive than a jump.

 In general, there is no reason to incur the overhead of
recursion when its use does not gain anything.

 Recursion is truly valuable when a problem has no
simple iterative solution.

Summary

Hanoi Tower - Instructions
1. Transfer all the disks from pole A to pole B.

2. You may move only ONE disk at a time.

3. A large disk may not rest on top of a smaller one
at anytime.

A B C

3

2

1

21

22

Lists and Iterators 3/28/2019

12

Try this one!

A B C

2

1

3

4

Shortest number of moves??

And this one

A B C

2

1

3

4

5

Shortest number of moves??

23

24

Lists and Iterators 3/28/2019

13

Now try this one!

A B C

6

5

4

3

2

1

Shortest number of moves??

How to solve Tower of Hanoi of n disks?
 If n = 1, “move disk 1 from A to B”, done.
 If n > 1,

1. Solve the Tower of Hanoi of n-1 disks, from A to C;
2. “move disk n from A to B”
3. Solve the Tower of Hanoi of n-1 disks, from C to B.

26

static Hanoi (int n, char A, char B, char C) {
if (n==1) printline(“move disk 1 from ” + A + “ to “ + B);
else {

Hanoi(n-1, A, C, B);
printline(“move disk “ + n + “ from “ + A + “ to “ + B);
Hanoi(n-1, C, B, A);

}
}

Counting the
moves:
Let f(n) be the
number of moves
for n disks.

f(1) = 1;
f(n) = 2f(n-1) + 1.

25

26

Lists and Iterators 3/28/2019

14

 Number of Disks Number of Moves
1 f(1) = 1
2 f(2) = 2*1 + 1 = 3
3 f(3) = 2*3 + 1 = 7
4 f(4) = 2*7 + 1 = 15
5 f(5) = 2*15 + 1 = 31
6 f(6) = 2*31 + 1 = 63

Let f(n) be the least number of moves for n disks.

f(1) = 1;
f(n) = 2f(n-1) + 1.

 Base step: n = 1.
 Left = f(1) = 1;
 Right = 21 - 1 = 1

 Induction hypothesis: f(n-1) = 2n-1 - 1.
 Inductive step:

 Left = f(n) = 2f(n-1) + 1 = 2(2n-1 - 1) + 1 = 2n - 1.
 Right = 2n - 1.

28

Let f(n) be the number of moves for n disks.
f(1) = 1;
f(n) = 2f(n-1) + 1.

Prove: f(n) = 2n - 1.
By induction.

27

28

Lists and Iterators 3/28/2019

15

Exponential Growth
So the formula for finding the number of steps it takes

to transfer n disks from post A to post C is:

2n - 1
 If n = 64, the number of moves of single disks is 2 to

the 64th minus 1, or 18,446,744,073,709,551,615
moves! If one worked day and night, making one
move every second it would take slightly more than
580 billion years to accomplish the job! - far, far
longer than some scientists estimate the solar system
will last.

Main Benefits of Recursive Algorithms

 Invariably recursive functions are clearer, simpler,
shorter, and easier to understand than their non-
recursive counterparts.

 The program directly reflects the abstract solution
strategy (algorithm).

 From a practical software engineering point of view
these are important benefits, greatly enhancing the
cost of maintaining the software.

29

30

Lists and Iterators 3/28/2019

16

Consider the following program for
computing the Fibonacci function.
int s1, s2 ;
int fib (int n) {

if (n == 0) return 0;
else if (n == 1) return 1;
else {

s1 = fib(n-1);
s2 = fib(n-2);
return s1 + s2;

}
}

fib(2) = ?

fib(3) = ?

fib(4) = ?

The main thing to note here is that the variables that will
hold the intermediate results, S1 and S2, have been
declared as global variables.

. This is a mistake. Although
the function looks just fine,
its correctness crucially
depends on having local
variables for storing all the
intermediate results. As
shown, it will not correctly
compute the Fibonacci
function for n=4 or larger.
However, if we move the
declaration of s1 and s2
inside the function, it works
perfectly.

 This sort of bug is
very hard to find, and
bugs like this are
almost certain to
arise whenever you
use global variables
to store intermediate
results of a recursive
function.

31

32

Lists and Iterators 3/28/2019

17

From Recursion to Iteration
 Most recursive algorithms can be translated, by a fairly

mechanical procedure, into iterative algorithms.
Sometimes this is very straightforward - for example,
most compilers detect a special form of recursion,
called tail recursion, and automatically translate into
iteration without your knowing. Sometimes, the
translation is more involved: for example, it might
require introducing an explicit stack with which to
“fake” the effect of recursive calls.

What is Tail Recursion?
 Recursive methods are either

 Tail recursive
 Nontail recursive

 Tail recursive method has the recursive call as the last
operation in the method.

 Recursive methods that are not tail recursive are
called non-tail recursive.

33

34

Lists and Iterators 3/28/2019

18

Is Factorial Tail Recursive?
 Is the method facto a tail recursive method?

int facto(int x){

if (x==0)

return 1;

else

return x*fact(x-1);

}

 When returning back from a recursive call, there is still
one pending operation, multiplication.

 Therefore, facto is a non-tail recursive method.

Another Example
 Is this method tail recursive?

void tail(int i) {

if (i>0) {

system.out.print(i+"")

tail(i-1)

}

It is tail recursive!

35

36

Lists and Iterators 3/28/2019

19

Third Example
 Is the following program tail recursive?

void prog(int i) {

if (i>0) {

prog(i-1);

System.out.print(i+"");

prog(i-1);

}

}

 No, because there is an earlier recursive call, which is not the last
operation.

 In tail recursion, the recursive call should be the last operation,
and there should be no earlier recursive calls whether direct or
indirect.

Advantage of Tail Recursive Method
 Tail Recursive methods are easy to convert to

iterative.

 Smart compilers can detect tail recursion and convert
it to iterative to optimize code

 Used to implement for loops in languages that do not
support loop structures explicitly (e.g. prolog)

void tail(int i){
if (i>0) {

system.out.println(i+"");
tail(i-1)

}
}

void iterative(int i){
for (;i>0;i--)

System.out.println(i+"");
}

37

38

Lists and Iterators 3/28/2019

20

Converting Non-tail to Tail Recursive
 A non-tail recursive method can be converted to a tail-recursive

method by means of an "auxiliary" parameter used to form the
result.

 The technique is usually used in conjunction with an "auxiliary"
function. This is simply to keep the syntax clean and to hide the
fact that auxiliary parameters are needed.

int fact_aux(int n, int result) {
if (n == 0) return result;
return fact_aux(n - 1, n * result)

}

int fact(n) {
return fact_aux(n, 1);

}
int fact(int n){

if (n==0) return 1;
else return n*fact(n-1);

}

Converting Non-tail to Tail Recursive
 A tail-recursive Fibonacci method can be implemented by using

two auxiliary parameters for accumulating results.

int fib_aux (int i , int nextResult, int result)

{

if (i == 0)

return result;

return fib_aux(i - 1, nextResult + result, nextResult);

}

To calculate fib(n) , call fib_aux(n,1,0)

auxiliary parameters!

39

40

Lists and Iterators 3/28/2019

21

Patterns for Converting Tail Recursive
to Iterative

F(x) {
if (P(x))return G(x);
S(x);
return F(H(x));

}

 If P(x) is true, the value of F(x) is the value of some other
function G(x). Otherwise, the value of F(x) is the value of the
function F on some other value, H(x)

F(x) {
while (!P(x)) {

S(x);
x = H(x);

}
return G(x);

}

Converting Tail Recursive to Iterative

the function F is fact_aux
x  (n, result), tuple of the two parameters
P(n, result)  (n == 1)
G(n, result)  result
H(n, result)  (n - 1, n * result)
S(n, result)  nothing

int fact_aux(int n, int result) {
if (n == 1) return result;
return fact_aux(n - 1, n * result);

}

F(x) {
if (P(x)) return G(x);
S(x);
return F(H(x));

}

int fact_iter(int n, int result) {
while (n != 1) {

(n, result) = (n – 1, n * result);
}
return result;

}

F(x) {
while (!P(x)) {

S(x);
x = H(x);

}
return G(x);

}

41

42

Lists and Iterators 3/28/2019

22

Converting Tail Recursive to Iterative

the function F is fib_aux
x  (n, nRes, res), tuple of the three parameters
P(n, nRes, res)  (n == 0)
G(n, nRes, res)  res
H(n, nRes, res)  (n - 1, nRes + res, nRes)
S(n, result)  nothing

int fib_aux (int n, int nRes, int res){
if (n == 0)return res;
return fib_aux(n - 1, nRes + res, nRes);

}

F(x) {
if (P(x)) return G(x);
S(x);
return F(H(x));

}

int fib_iter(int n, int nRes, int res) {
while (n != 0) {

(n, nRes, res) = (n – 1, nRes + res, nRes);
}
return res;

}

F(x) {
while (!P(x)) {

S(x);
x = H(x);

}
return G(x);

}

Recursive Selection Sort
void ssort_rec(int n, int A[]) {

if (n <= 1) return;
int i = arg_max(n, A); // find index of max in A
swap(A, i, n-1); // swap elements at i and n-1.
ssort_rec(n – 1, A);

}

Quiz Questions:

ssort_rec is tail-recursion!!!
What is the result of removing this tail-recursion?

Suppose arg_max(i, A[]) takes O(i) time.
What is the time complexity of ssort_rec(n, A)?

43

44

Lists and Iterators 3/28/2019

23

Recursion
 Recursion is more than just a programming

technique. It has two other uses in computer
science and software engineering, namely:

 As a way of describing, defining, or specifying
things.

 As a way of designing solutions to problems
(divide and conquer, dynamic programming,
etc).

46

Defining sets via recursion
 Same as mathematical induction:

 Base case (or basis step)
 Recursive step

 Example: the set of positive integers
 Basis step: 1  S
 Recursive step: if x  S, then x+1  S

45

46

Lists and Iterators 3/28/2019

24

47

Defining sets via recursion
 Give recursive definitions for:

a) The set of odd positive integers
 1  S
 If x  S, then x+2  S

b) The set of positive integer powers of 3
 3  S
 If x  S, then 3*x  S

c) The set of polynomials with integer coefficients
 0  S
 If p(x)  S, then p(x) + cxn  S

 c  Z, n  Z and n ≥ 0

48

Defining strings via recursion
 Terminology

  is the empty string: “”
  is the set of all letters: { a, b, c, …, z }
 The set of letters can change depending on the

problem
 We can define a set of strings * as follows

 Base step:   *
 If w  * and x  , then wx  *
 Thus, * s the set of all the possible strings that

can be generated with the alphabet

47

48

Lists and Iterators 3/28/2019

25

49

Defining strings via recursion
 Let  = { 0, 1 }
 Thus, * is the set of all binary all binary

strings
 Or all possible computer files

50

String length via recursion
 How to define string length recursively?

 Basis step: len() = 0
 Recursive step: len(wx) = len(w) + 1 if w  * and x 


 Example: len(“aaa”)
 len(“aaa”) = len(“aa”) + 1
 len(“aa”) = len(“a”) + 1
 len(“a”) = len(“”) + 1
 len(“”) = 0
 Result: 3

49

50

Lists and Iterators 3/28/2019

26

51

Strings via recursion example
 Given a string x = a1a2…an, xR stands for its reversal:

xR = anan-1…a1. Eg. x = abc, xR = cba.
 A string x is a palindrome if x = xR. Eg. x = aba.
 Give a recursive definition for P, the set of string that

are palindromes
 We will define set P, which is the set of all palindromes

 Basis step:   P
 Second basis step: x  P when x  
 Recursive step: xpx  P if x   and p  P

How many binary strings of length n
that do not contain the pattern 11?
 n = 0: 1 string (, the empty string)
 n = 1: 2 strings (0 and 1)
 n = 2: 3 strings (00, 01, 10)
 n = 3: 5 strings (000, 001, 010, 100, 101)
 n = 4: 8 strings (0000, 0001, 0010, 0100, 1000, 0101,

1001, 1010)

 Any pattern?
 A Fibonacci sequence!

52

51

52

Lists and Iterators 3/28/2019

27

How many binary strings of length n
that do not contain the pattern 11?
 n = 2: 3 strings (00, 01, 10)
 n = 3: 5 strings (000, 001, 010, 100, 101)
 n = 4: 8 strings (0000, 0001, 0010, 0100, 1000, 0101,

1001, 1010)

 The strings of n=4 can be divided into two classes:
 X = { 0000, 0001, 0010, 0100, 0101 } and
 Y = { 1000, 1001, 1010 }
 X can be obtained from n = 3: adding a leading 0
 Y can be obtained from n = 2: adding leading 10.

53

How many binary strings of length n
that do not contain the pattern 11?
 Let Sn be the set of binary strings of length n that do

not contain the pattern 11.
 For any string x in Sn-1, y = 0x is a string of Sn.
 For any string x in Sn-2, z = 10x is a string of Sn.
 Any string of Sn is either y or z above.
 Hence Sn = 0Sn-1  10Sn-2, or |Sn| = |Sn-1| + |Sn-2|
 From |S0| = 1, |S1| = 2, we can compute any |Sn|.

54

53

54

Lists and Iterators 3/28/2019

28

55

Recursive Functions on Natural Numbers
 The set of natural numbers

 Basis step: 0  N
 Recursive step: if x  N, then x+1  N

 Define plus on N:
 Basis step: plus(0, y) = y for all y  N
 Recursive step: plus(x+1, y) = plus(x, y)+1 for all x, y  N

 Prove that plus(x, y) = x+y.
 Induction on x:

 Basis step x=0: plus(0, y) = 0+y for all y  N
 Induction hypothesis: plus(x, y) = x+y
 Recursive step x = u+1: plus(u+1, y) = (u+1)+y for all u, y  N
 Left = plus(u+1, y) = plus(u, y)+1 = u+y+1
 Right = (u+1)+y = u+y+1

 This induction proof is also called “structural induction”.

56

Recursive Functions on Natural Numbers
 Define plus on N:

 Basis step: plus(0, y) = y for all y  N
 Recursive step: plus(x+1, y) = plus(x, y)+1 for all x, y  N

 Define mult on N:
 Basis step: mult(0, y) = 0 for all y  N
 Recursive step: mult(x+1, y) = plus(mult(x, y), y) for all x, y 

N
 Prove that mult(x, y) = x*y.
 Induction on x:

 Basis step x=0: mult(0, y) = 0*y for all y  N
 Induction hypothesis: mult(x, y) = x*y
 Recursive step x = u+1: mult(u+1, y) = (u+1)*y for all u, y  N
 Left = mult(u+1, y) = plus(mult(u, y), y) = u*y+y
 Right = (u+1)*y = u*y+y

55

56

Lists and Iterators 3/28/2019

29

57

Recursion Functions on Strings
 Given a string x = a1a2…an , xR stands for its reversal:

xR = anan-1…a1. Eg. x = abc, xR = cba.
 How to define xR recursively?

 Base step:   *
 Recursive step: If w  * and x  , then wx  *

 Basis step: R = 
 Recursive step: (wx)R = x(w)R if x   and w  *

 Theorem: (aw)R = (w)Ra for all a  , w  *.

58

How to prove (aw)R = (w)Ra ?
 Base step:   *
 Recursive step: If w  * and x  , then wx  *

 Basis step: R = 
 Recursive step: (wx)R = x(w)R if x   and w  *

 Structural Induction Proof:
 Basis case w = : (a)R = ()Ra (easy)
 Induction hypothesis: (aw)R = (w)Ra
 Inductive case: (a(wx))R = (wx)R a if x   and w  *
 Left = (a(wx))R = ((aw)x)R = x(aw)R = x(w)Ra.
 Right = (wx)Ra = (x(w)R)a = x(w)Ra.

57

58

Lists and Iterators 3/28/2019

30

59

How to prove ((w)R)R = w ?
 Base step:   *
 Recursive step: If w  * and x  , then wx  *

 Basis step: R = 
 Recursive step: (wx)R = x(w)R if x   and w  *

 Structural Induction Proof:
 Basis case: (()R)R =  (easy)
 Induction hypothesis: ((w)R)R = w
 Inductive case: ((wx)R)R = wx if x   and w  *
 Lemma: (aw)R = (w)Ra
 Left = ((wx)R)R = (x(w)R)R = ((w)R)Rx = wx.
 Right = wx.

60

How to prove len((w)R) = len(w) ?
 Basis step: R = 
 Recursive step: (wx)R = x(w)R if x   and w  *
 Basis step: len() = 0
 Recursive step: len(wx) = len(w) + 1 if w  * and x  

 Structural Induction Proof:
 Basis case: len(()R) = len() (easy)
 Induction hypothesis: len((w)R) = len(w)
 Inductive case: len((wx)R) = len(wx) if x   and w  *
 Lemma: len(aw) = 1+len(w) if a   and w  *
 Left = len((wx)R) = len(x(w)R) = 1+len((w)R) = 1+len(w).
 Right = len(wx) = len(w)+1.

59

60

Lists and Iterators 3/28/2019

31

61

The append function on strings
 Basis step: len() = 0
 Recursive step: len(wx) = len(w) + 1 if w  * and x  

 The function app(x, y) “appends” x and y together.
 app(“abc”, “xyz”) = “abcxyz”.

 Basis step: app(v, ) = v if v  *
 Recursive step: app(v, wx) = app(v, w)x if v, w  * and

x  .

 How to prove len(app(v, w)) = len(v)+len(w) ?

62

How to prove len(app(v, w)) = len(v)+len(w) ?

 Basis step: len() = 0
 Recursive step: len(wx) = len(w) + 1 if w  * and x  
 Basis step: app(v, ) = v if v  *
 Recursive step: app(v, wx) = app(v, w)x if v, w  * and x  .

 Structural Induction Proof:
 Basis case: len(app(v, )) = len(v)+len() (easy)
 Induction hypothesis: len(app(v, w)) = len(v)+len(w)
 Inductive case: len(app(v, wx)) = len(v)+len(wx)
 Lemma: len(aw) = 1+len(w) if a   and w  *
 Left = len(app(v, wx)) = len(app(v, w)x) = len(app(v, w))+1 =

len(v)+len(w) + 1
 Right = len(v)+len(wx) = len(v)+len(w) + 1.

61

62

