R-1.7 Order the functions by the big-Oh notation.
Group these functions that are big-Theta of one another.

\[\frac{1}{n}, 2^{100}, \log \log n, \frac{\log n}{n^{0.01}}, 5n, 3n^{0.5}, 2 \log n, 5n, \]
\[n \log n, 6n \log n, 2n \log n, 4n^{3/2}, 4 \log n, \]
\[n^2 \log n, n^3, 2^n, 4^n, 2^{2n} \]

R-1.27 A = \{ -2, -4, 3, -1, 5, 6, -7, -2, 4, -3, 2, 7 \}
Max suffix subarray: 1, 3, -1, 5, 6, 7
Sum = 13

R-1.28 Find amortized running time of an operation
in a series of n add operations on an initially empty table implemented with an array
such that the capacity increment parameter is always maintained to be \(\lceil \log (n+1) \rceil \), where \(n \) is the no. of elements in the array.

- Suppose the initial array size is 1 and we begin with \(n \) adds.
- Let \(k = \lceil \log (n) \rceil \). Consider the last \(n/2 \) adds.
- For \(n/2 \leq k < n \), we know \(k-1 \leq \lfloor \log (k+1) \rfloor \leq k \)
Thus, for any expression executed in the last \(n/2 \) adds, we extend the array by either \(k-1 \) or \(k \) elements.
Let the number of expansions from \(\frac{n}{2} \) to \(n \) is \(E \), then
\[
\frac{n}{2k} \leq E \leq \frac{n}{2(k-1)}, \quad \text{or} \quad E = \Theta\left(\frac{n}{k}\right)
\]

Let the total cost of the last \(\frac{n}{2} \) adds be \(S \). Then
\[
\left(\frac{n}{2}\right)E + \frac{n}{2} + (k-1)E + \ldots + E(k-1) \leq S \leq \left(\frac{n}{2}\right)E + \frac{n}{2} + kE + \ldots + E_k
\]

Or equivalently
\[
\left(\frac{n}{2}\right)(E+1) + (k-1)E(E+1) \leq S \leq \left(\frac{n}{2}\right)(E+1) + kE(E+1)
\]

After simplification
\[
\left(\frac{n}{2}\right) + (k-1)E(E+1) \leq S \leq \left(\frac{n}{2}\right)(E+1) + kE(E+1)
\]

Since \(E \) is \(\Theta\left(\frac{n}{k}\right) \), we conclude that \(S \) is \(\Theta\left(\frac{n^2}{k}\right) \). And the amortized complexity of the last \(\frac{n}{2} \) operations is \(\Theta\left(\frac{n}{k}\right) \).

Let \(T \) be the total cost of all \(n \) operations. Then \(S \leq T < 2S \). The amortized complexity of all \(n \) operations is \(\Theta\left(\frac{n}{k}\right) \).

\[K = \lfloor \log_2(n) \rfloor\]
R-129 Describe a recursive algorithm for finding both
the minimum and maximum elements in an
array A of n elements. Your method should
return a pair (a, b) where a is the minimum
element and b the maximum. What is the
running time?

```
Algorithm MinMax(A)
Input: Array A of n elements
Output: (a, b)
```

```
a = A[0]
b = A[0]
for i = 1 to (n-1) do
    \[ a = \min (a, A[i]) \]
    \[ b = \max (b, A[i]) \]
\]
end for
```

```
\[ a = \min (A[0], MinMax(A[1:n-1])) \]
\[ b = \max (A[0], MinMax(A[1:n-1])) \]
return (a, b)
```

Running time = O(n²)

C-1.1 Modify MaxSubFastest so it returns j and k,
the indices of the max subarray.

```
Input: Array A of n elements
Output: Max subarray sum of array A, j and
k where j and k are in the max subarray.
```

```
M₀ = 0
for t = 1 to n do
    Mₜ = max (0, Mₜ₋₁ + A[t]²)
    m = Mₜ
end for
```

for \(t = 1 \) to \(n \) do
\[m = \text{max} \& m, M \]
\[k < t \]
\[\text{sum} \leftarrow m \]
while \((\text{sum} \neq 0)\)
\[\text{sum} \leftarrow \text{sum} - A[k \cdot j] \]
\[k = k - 1 \]
\[j = j + 1 \]

return \(m, j, k \)

C-13 What is the amortized running time of the operations in a sequence of \(n \) operations:
\[P = P_1P_2 \ldots P_n \] if the running time of
\[P_i \] is \(O(c_i) \) if \(i \) is a multiple of 3,
and a constant otherwise?

\[P = P_1P_2 \ldots P_n \]
\[a + a + 3c + a + a + 6c + a + a + 9c + \ldots n \]
Assume \(n \) is a multiple of 3

Then
\[\frac{2na + (3c + 6c + \ldots + n)}{3} \]
\[= \frac{2na + 3c}{3} \left(\frac{1 + 2 + \ldots + n}{3} \right) \]
\[= O(n^2) \]
C-1.14 An n-degree polynomial \(p(x) = \sum_{i=0}^{n} a_i x^i \), where
\(x \) is a real number and each \(a_i \) is a constant.

\(O(n^2) \) - time method for computing \(p(x) \) for
a particular \(x \).

Algorithm: Polynomial \(p(x) \)
Input: Array \(A \) representing each \(a_i \) in \(p(x) \).
Output: Value of \(p(x) \).

\[p \leftarrow p + (A[i] \times \text{pow}(x, i)) \]

\[p(x) = a_0 + x(a_1 + x(a_2 + x(\ldots + x(a_{n-1} + x_{n})) \ldots)) \]

Number of multiplications = \(n + n - 1 + \ldots + 3 + 2 + 1 = \frac{n(n+1)}{2} = O(n^2) \)

Number of additions = \(\# n = O(n) \).

C-1.24 Suppose that each row of an \(n \times n \) array \(A \) consists of 1's and 0's such that, in
any row \(i \) of \(A \), all the 1's come
before any 0's in that row.

Describe an \(O(n) \) method for finding
the row of \(A \) that contains the most 1's

Algorithm: Max's
Input: \(n \times n \) array \(A \) of 1's and 0's, such that
in any row, all 1's come before any 0's
Output: Row \(i \) number that has maximum \(1's \)
\(n = 0 \)
\(c = 0 \)

\[\text{flag} \leftarrow \text{true} \]

\[\text{while} \ (n' = n \land c' = n) \ do \]

\[\text{if} \ (\text{flag} = \text{true}) \]

\[\text{if} \ (A[c] = 0) \]

\[\text{flag} \leftarrow \text{false} \]

\[c = c + 1 \]

\[\text{else} \]

\[\text{if} \ (A[c] = 1) \]

\[\text{flag} = \text{true} \]

\[\text{else} \]

\[n = n + 1 \]

C-130

Consider an implementation of the extensible table where, when the table's capacity is reached, we copy the elements into a new array with \(2 \times \text{TableSize} \) additional cells.

Show that performing a sequence of \(n \) odd operations takes \(\Theta(n^3) \) time.

Let \(a_i \) be the size of the array after the \(i \text{th} \) expansion. Then \(a_0 = 1 \) and \(a_i = a_{i-1} + \lceil \frac{a_{i-1}}{2} \rceil \)

We prove by induction that

\[a_i = 1 + (i+1)^2 \]

\[a_{i+1} = (i+1)(i+2) \]

Base Case

\[i = 0: \ a_0 = (0+1)^2 = 1 = a_0 \]

\[i = 1: \ a_2 = (0+1)(0+2) = 2 = a_1 \]
Induction Hypothesis:
\[a_{2i} = (i+1)^2 \]
\[a_{2i+1} = (i+1)(i+2) \]

Inductive Case:
\[a_{2i+2} = a_{2i+1} + \sqrt{a_{2i+1}} = (i+1)(i+2) + \sqrt{(i+1)(i+2)} \]
\[a_{2i+2} = (i+1)(i+2) + (i+2) = (i+2)^2 \]
\[a_{2i+3} = a_{2i+2} + \sqrt{a_{2i+2}} = (i+2)^2 + \sqrt{(i+2)^2} \]
\[a_{2i+3} = (i+2)^2 + (i+2) = (i+2)(i+3) \]

Thus, \[a_{2i} = (i+1)^2 \] and \[a_{2i+1} = (i+1)(i+2) \].

From
\[a_{2i} = (i+1)^2 \] and \[a_{2i+1} = (i+1)(i+2) \], we conclude
that \((j+1)^2 / 4 \leq a_j \leq (j+2)^2 / 4 \) by letting
\[j = 2i \text{ or } 2i+1. \]

Let \(k \) be the final array size. Then \(a_k \leq n \leq a_k \),
so that \(k^2 / 4 \leq n \leq (k+2)^2 / 4 \) or \(2 \sqrt{n \cdot \frac{k^2}{4}} - \frac{k^2}{4} \leq k \leq 2 \sqrt{n} \).
That means the number of expansions \(k \) is \(\Theta(n^{1/2}) \).

Let \(S \) be the total cost of copying elements
from old arrays into new arrays during
\(k \) expansions.

Then \[S = a_0 + a_1 + a_2 + \ldots + a_k. \]
Using
\[(j+1)^2 / 4 \leq a_j \leq (j+2)^2 / 4 \]
we have
\[(1^2 + 2^2 + \ldots + k^2) / 4 \leq S \leq (1^2 + 2^2 + 3^2 + \ldots + (k+1)^2) / 4 \]
\[\text{On, } S \text{ is } \Theta(k^3) \text{ or } \Theta(n^{3/2}), \text{ because } k \text{ is } \Theta(n^{1/2}). \]

The total cost of \(n \) adds is
\[n + S = \Theta(n^{3/2}) \]
and the amortized cost is \(\Theta(n^{1/2}) \).
Given an array A of n positive integers, find the longest subarray A such that all its elements are distinct.

What is the running time of the method?

Algorithm longest_subarray(A)
Input: Array A of size n
Output: A[i...k] such that A[i...k] is the longest repeated subarray in A.

max_length = 0
for i = 0 to n-1
 length = 0
 for j = i to n-1
 if (A[j] = A[j+1])
 length = length + 1
 if (length > max_length)
 max_length = length
 j = i
 k = j + 1
return A[i...k]

Running time O(n^2)