Chapter 9

PSPACE: A Class of Problems Beyond NP

Geography Game

Geography. Alice names capital city c of country she is in. Bob names a capital city c' that starts with the letter on which c ends. Alice and Bob repeat this game until one player is unable to continue. Does Alice have a forced win?

Ex. Budapest \rightarrow Tokyo \rightarrow Ottawa \rightarrow Ankara \rightarrow Amsterdam \rightarrow Moscow \rightarrow Washington \rightarrow Nairobi \rightarrow ...

Geography Game on graphs. Given a directed graph $G = (V, E)$ and a start node s, two players alternate turns by following, if possible, an edge out of the current node to an unvisited node. Can first player guarantee to make the last legal move?

Remark. Some problems (especially involving 2-player games and AI) defy classification according to P, EXPTIME, NP, and NP-complete.

9.1 PSPACE

PSPACE

P. Decision problems solvable in polynomial **time**.

$PSPACE$. Decision problems solvable in polynomial **space**.

Observation. $P \subseteq PSPACE$.

Theorem. $NP \subseteq PSPACE$.

Proof. Consider arbitrary problem Y in NP.

- Since $Y \leq 3$-SAT, there exists algorithm that solves Y in poly-time plus polynomial number of calls to 3-SAT black box.
- Can implement the 3-SAT black box in poly-space.

Claim. 3-SAT is in $PSPACE$.

Proof. Use n bit odometer.

- Enumerate all 2^n possible truth assignments using counter.
- Check each assignment to see if it satisfies all clauses.

Algorithm. Use n bit odometer.

Binary counter. Count from 0 to $2^n - 1$ in binary.

- Enumerate all 2^n possible truth assignments using counter.
- Check each assignment to see if it satisfies all clauses.

Theorem. $NP \subseteq PSPACE$.

Proof. Consider arbitrary problem Y in NP.

- Since $Y \leq 3$-SAT, there exists algorithm that solves Y in poly-time plus polynomial number of calls to 3-SAT black box.
- Can implement the 3-SAT black box in poly-space.
9.3 Quantified Satisfiability

Quantified Satisfiability

QSAT. Let $\Phi(x_1, \ldots, x_n)$ be a Boolean CNF formula. Is the following propositional formula true?

$$\exists x_1 \forall x_2 \exists x_3 \ldots \forall x_n \exists x_n \Phi(x_1, \ldots, x_n)$$

Intuition. Amy picks truth value for x_1, then Bob for x_2, then Amy for x_3, and so on. Can Amy satisfy Φ no matter what Bob does?

Ex. Yes. Amy sets x_1 true; Bob sets x_2; Amy sets x_3 to be same as x_2.
Ex. No. If Amy sets x_1 false; Bob sets x_2 false; Amy loses.
No. If Amy sets x_1 true; Bob sets x_2 true; Amy loses.

QSAT is in PSPACE

Theorem. QSAT \in PSPACE.

Pf. Recursively try all possibilities.
- Only need one bit of information from each subproblem.
- Amount of space is proportional to depth of function call stack.

Quantified Satisfiability

QSAT. Let $\Phi(x_1, \ldots, x_n)$ be a Boolean CNF formula. Is the following propositional formula true?

$$\exists x_1 \forall x_2 \exists x_3 \ldots \forall x_n \exists x_n \Phi(x_1, \ldots, x_n)$$

Intuition. Amy picks truth value for x_1, then Bob for x_2, then Amy for x_3, and so on. Can Amy satisfy Φ no matter what Bob does?

Ex. Yes. Amy sets x_1 true; Bob sets x_2; Amy sets x_3 to be same as x_2.
Ex. No. If Amy sets x_1 false; Bob sets x_2 false; Amy loses.
No. If Amy sets x_1 true; Bob sets x_2 true; Amy loses.

9.4 Planning Problem

Planning Problem

Conditions. Set $C = \{ C_1, \ldots, C_n \}$.

Initial configuration. Subset $c_0 \subseteq C$ of conditions initially satisfied.

Goal configuration. Subset $c* \subseteq C$ of conditions we seek to satisfy.

Operators. Set $O = \{ O_1, \ldots, O_k \}$.
- To invoke operator O_i, must satisfy certain prereq conditions.
- After invoking O_i certain conditions become true, and certain conditions become false.

PLANNING: Is it possible to apply sequence of operators to get from initial configuration to goal configuration?

Examples.
- 15-puzzle.
- Rubik’s cube.
- Logistical operations to move people, equipment, and materials.
Planning Problem: 8-Puzzle

Planning example. Can we solve the 8-puzzle?

Conditions. \(C_{ij}, 1 \leq i, j \leq 9 \). \(C_{ij} \) means tile \(i \) is in square \(j \).\(i \leq 9 \) means space.

Initial state. \(c_0 = \{ C_{11}, C_{22}, \ldots, C_{66}, C_{78}, C_{87}, C_{99} \} \).

Goal state. \(c^* = \{ C_{11}, C_{22}, \ldots, C_{66}, C_{77}, C_{88}, C_{99} \} \).

Operators.
- Precondition to apply \(O_i = \{ C_{11}, C_{22}, \ldots, C_{66}, C_{78}, C_{87}, C_{99} \} \).
- After invoking \(O_i \), conditions \(C_{79} \) and \(C_{97} \) become true.
- After invoking \(O_i \), conditions \(C_{78} \) and \(C_{99} \) become false.

Solution. No solution to this 8-puzzle!

C\(\)ij means tile \(i \) is in square \(j \); \(i = 9 \) means space.

Diversion: Why is 8-Puzzle Unsolvable?

8-puzzle invariant. Any legal move preserves the parity of the number of pairs of pieces in reverse order (inversions).

Planning Problem: Binary Counter

Planning example. Can we increment an \(n \)-bit counter from the all-zeroes state to the all-ones state?

Conditions. \(C_1, \ldots, C_n \).

Initial state. \(c_0 = \{ \} \).

Goal state. \(c^* = \{ C_1, \ldots, C_n \} \).

Operators. \(O_1, \ldots, O_n \).
- To invoke operator \(O_i \), must satisfy \(C_1, \ldots, C_{i-1} \).
- After invoking \(O_i \), condition \(C_i \) becomes true.
- After invoking \(O_i \), conditions \(C_1, \ldots, C_{i-1} \) become false.

Solution. \(\{ \} = \{ C_1 \} \Rightarrow \{ C_2 \} \Rightarrow \{ C_3 \} \Rightarrow \{ C_3, C_1 \} \Rightarrow \ldots \)

Observation. Any solution requires at least \(2^n - 1 \) steps.

Planning Problem: In Exponential Space

Configuration graph \(G \).
- Include node for each of \(2^n \) possible configurations.
- Include an edge from configuration \(c' \) to configuration \(c'' \) if one of the operators can convert from \(c' \) to \(c'' \).

PLANNING. Is there a path from \(c_0 \) to \(c^* \) in configuration graph?

Claim. PLANNING is in EXPTIME.

PF. Run BFS to find path from \(c_0 \) to \(c^* \) in configuration graph.

Note. Configuration graph can have \(2^n \) nodes, and shortest path can be of length \(2^n - 1 \).

9.5 PSPACE-Complete
PSPACE-Complete

PSPACE. Decision problems solvable in polynomial space.

PSPACE-Complete. Problem Y is PSPACE-complete if (i) Y is in PSPACE and (ii) (PSPACE-hard) for every problem X in PSPACE, X \leq_P Y.

Theorem. PSPACE \subseteq EXPTIME.

Pf. Previous algorithm solves QSAT in exponential time, and QSAT is PSPACE-complete. □

Summary. P \subseteq NP \subseteq PSPACE \subseteq EXPTIME.

it is known that P \neq EXPTIME, but unknown which inclusion is strict; conjectured that all are.

PSPACE-Complete Problems

More PSPACE-complete problems.

- Competitive facility location.
- Natural generalizations of games.
 - Othello, Hex, Geography, Rush-Hour, Instant Insanity
 - Shanghai, go-moku, Sokoban
- Given a memory restricted Turing machine, does it terminate in at most k steps?
- Do two regular expressions describe different languages?
- Is it possible to move and rotate complicated object with attachments through an irregularly shaped corridor?
- Is a deadlock state possible within a system of communicating processors?

Competitive Facility Location

Input. Graph with positive edge weights, and target B.

Game. Two competing players alternate in selecting nodes. Not allowed to select a node if any of its neighbors has been selected.

Competitive facility location. Can second player guarantee at least B units of profit?

Claim. COMPETITIVE-FACILITY is PSPACE-complete.

Pf.

- To solve in poly-space, use recursion like QSAT, but at each step there are up to n choices instead of 2.
- To show that it's complete, we show that QSAT polynomial reduces to it. Given an instance of QSAT, we construct an instance of COMPETITIVE-FACILITY such that player 2 can force a win if QSAT formula is false.

Quantified Satisfiability

QSAT. Let \(\Phi(x_1, \ldots, x_n) \) be a Boolean CNF formula. Is the following propositional formula true?

\[(x_1 \lor x_2) \land (\neg x_1 \lor x_3) \land (x_3 \lor x_1) \]

Intuition. Amy picks truth value for \(x_1 \), then Bob for \(x_2 \), then Amy for \(x_3 \), and so on. Can Amy satisfy \(\Phi \) no matter what Bob does?

Ex. Yes. Amy sets \(x_1 \) true; Bob sets \(x_2 \); Amy sets \(x_3 \) to be same as \(x_2 \).

Ex. No. If Amy sets \(x_1 \) false; Bob sets \(x_2 \) false; Amy loses; if Amy sets \(x_1 \) true; Bob sets \(x_2 \) true; Amy loses.

Construction. Given instance \(\Phi(x_1, \ldots, x_n) \) of QSAT.

- Include a node for each literal and its negation and connect them.
- at least one of \(x_i \) and its negation can be chosen.
- Choose a constant \(c \geq n+2 \), and put weight \(c \) on literal \(x_i \) and its negation.
- Ensures variables are selected in order \(x_1, x_2, \ldots, x_n \).
- If QSAT is satisfiable, player 1 will win; player 2 will lose by 1 unit:

\[c^{n+1} + c^{n+3} + \ldots + c^3 + c + 1 \]

Competitive Facility Location

Claim. COMPETITIVE-FACILITY is PSPACE-complete.

Pf.

- To solve in poly-space, use recursion like QSAT, but at each step there are up to n choices instead of 2.
- To show that it's complete, we show that QSAT polynomial reduces to it. Given an instance of QSAT, we construct an instance of COMPETITIVE-FACILITY such that player 2 can force a win if QSAT formula is false.
Competitive Facility Location

Construction. Given instance $\Phi(x_1, \ldots, x_k) = C_1 \land C_2 \land \ldots C_m$ of QSAT:
- Give player 1 one last move on which she can try to win.
- For each clause C_i, add node with value 1 and an edge to each of its literals.
- Player 2 can make last move iff the truth assignment defined alternately by the players failed to satisfy some clause.

Geography Game

Geography. Alice names capital city c of country she is in. Bob names a capital city c' that starts with the letter on which c ends. Alice and Bob repeat this game until one player is unable to continue. Does Alice have a forced win?

Geography on graphs. Given a directed graph $G = (V, E)$ and a start node b, two players alternate turns by following, if possible, an edge out of the current node to an unvisited node. Can first player guarantee to make the last legal move?

Reducing QSAT to Geography Game

Construction. Given instance $\Phi(x_1, \ldots, x_k) = C_1 \land C_2 \land \ldots C_m$ of QSAT, k is odd.

1. Give player 1 one last move on which she can try to win.
2. For each clause C_i, add node with value 1 and an edge to each of its literals.
3. Player 2 can make last move iff the truth assignment defined alternately by the players failed to satisfy some clause.