NP and Computational Intractability

Chapter 8

Directed Hamiltonian Cycle

Claim. \(G \) has a Hamiltonian cycle iff \(G' \) does.

Pf.

1. Suppose \(G \) has a directed Hamiltonian cycle \(\Gamma \).
 - Then \(G' \) has an undirected Hamiltonian cycle (same order).

2. Suppose \(G' \) has an undirected Hamiltonian cycle \(\Gamma' \).
 - \(\Gamma' \) must visit nodes in \(G' \) using one of the following two orders:
 - \(\ldots, B, R, G, R, B, G, R, B, \ldots \)
 - \(\ldots, B, G, B, R, G, B, R, G, B, \ldots \)
 - Blue nodes in \(\Gamma' \) make up directed Hamiltonian cycle \(\Gamma \) in \(G \), or reverse of one. •

Traveling Salesman Problem

Traveling Salesman Problem (TSP): Given a complete graph with nonnegative edge costs, find a minimum cost cycle visiting every vertex exactly once.

Example: Given a number of cities and the costs of traveling from any city to any other city, what is the cheapest round-trip route that visits each city exactly once and then returns to the starting city?

Claim. \(HAM-CYCLE \leq_p TSP \).

Pf.

Given a graph \(G = (V, E) \), construct a complete weighted graph \(G' = (V, V \times V, W) \), such that \(W(e) = 1 \) for \(e \in E \) and \(W(e) = 2 \) for \(e \not\in E \), and \(d = |V| \).
8.7 Graph Coloring

Basic genres:
- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3D-MATCHING, 3-COLOR.
- Numerical problems: SUBSET-SUM, KNAPSACK.

3-Colorability

Claim. 3-SAT ≤ P 3-COLOR.

Pf. Given 3-SAT instance Φ, we construct an instance of 3-COLOR that is 3-colorable iff Φ is satisfiable.

Construction.
1. For each literal, create a node.
2. Create 3 new nodes T, F, B; connect them in a triangle, and connect each literal to B.
3. Connect each literal to its negation.
4. For each clause, add gadget of 6 nodes and 13 edges.

```
T  B  F
x1 x1 x2 x2 x3 x3
true false
```

3-Colorability

Claim. Graph is 3-colorable iff Φ is satisfiable.

Pf. Suppose graph is 3-colorable.
1. Let’s call the colors of T and F “true color” and “false color”, resp.
2. Then each literal has either true color or false color.
3. A literal and its negation always have opposite colors.
3-Colorability

Claim. Graph is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph is 3-colorable.
 (i) Let's call the colors of T and F "true color" and "false color", resp.
 (ii) Then each literal has either true color or false color.
 (iii) A literal and its negation always have opposite colors.
 (iv) Ensures at least one literal in each clause is true color.

3-Colorability

Claim. Graph is 3-colorable iff Φ is satisfiable.

Pf. \Rightarrow Suppose graph is 3-colorable.
 (i) Let's call the colors of T and F "true color" and "false color", resp.
 (ii) Then each literal has either true color or false color.
 (iii) A literal and its negation always have opposite colors.
 (iv) Ensures at least one literal in each clause is true color.
Map 3-Colorability

MAP-3-COLOR: Given a planar map, can it be colored using 3 colors so that no adjacent regions have the same color?

YES instance.

NO instance.

Planarity

Def. A graph is **planar** if it can be embedded in the plane in such a way that no two edges cross.

Applications: VLSI circuit design, computer graphics.

Kuratowski’s Theorem. An undirected graph G is non-planar iff it contains a subgraph homeomorphic to K_5 or $K_{3,3}$.

Planarity Testing

Planarity testing. [Hopcroft-Tarjan 1974] $O(n)$

Remark. Many intractable graph problems can be solved in poly-time if the graph is planar; many tractable graph problems can be solved faster if the graph is planar.
Planar Graph 3-Colorability

Q. Is this planar graph 3-colorable?

Map 3-Colorability and Graph 3-Colorability

Claim. Map-3-COLOR ≤ \text{P}_{\text{PLANAR-GRAPH-3-COLOR}}.

Pf sketch. Create a vertex for each region, and an edge between regions that share a nontrivial border.

Planar Graph 3-Colorability

Claim. W is a planar graph such that:
- In any 3-coloring of W, opposite corners have the same color.
- Any assignment of colors to the corners in which opposite corners have the same color extends to a 3-coloring of W.

Pf. W has only two 3-colorings (or by permuting colors).

four corners same color

four corners two colors

Planar Graph 3-Colorability

Claim. 3-COLOR ≤ \text{P}_{\text{PLANAR-GRAPH-3-COLOR}}.

Pf. Given instance of 3-COLOR, draw graph in plane, letting edges cross.
- Replace each edge crossing with planar gadget W.
- In any 3-coloring of W, a ≠ a' and b ≠ b'.
- If a = a' and b = b' then can extend to a 3-coloring of W.
Planar Graph 3-Colorability

Claim. $3\text{-COLOR} \leq_{\text{P}} \text{PLANAR-GRAPH-3-COLOR}$.

Proof. Given instance of 3-COLOR, draw graph in plane, letting edges cross.
- Replace each edge crossing with planar gadget W.
- In any 3-coloring of W, $a \neq a'$ and $b \neq b'$.
- If $a \neq a'$ and $b \neq b'$ then can extend to a 3-coloring of W.

8.8 Numerical Problems

Basic genres:
- Packing problems: SET-PACKING, INDEPENDENT SET.
- Covering problems: SET-COVER, VERTEX-COVER.
- Constraint satisfaction problems: SAT, 3-SAT.
- Sequencing problems: HAMILTONIAN-CYCLE, TSP.
- Partitioning problems: 3-COLOR, 3D-MATCHING.
- Numerical problems: SUBSET-SUM, Knapsack.

Planar k-Colorability

PLANAR-2-COLOR. Solvable in linear time.

PLANAR-3-COLOR. NP-complete.

PLANAR-4-COLOR. Solvable in O(1) time.

Theorem. [Appel-Haken, 1976] Every planar map is 4-colorable.
- Resolved century-old open problem.
- Used 50 days of computer time to deal with many special cases.
- First major theorem to be proved using computer.

False intuition. If PLANAR-3-COLOR is hard, then so is PLANAR-4-COLOR and PLANAR-5-COLOR.

Subset Sum

SUBSET-SUM. Given a set of natural numbers w_1, w_2, \ldots, w_n and an integer W, is there a subset that adds up to exactly W?

Ex: $\{1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344\}$, $W = 3754$.
Yes: $1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 3754$.

Remark. With arithmetic problems, input integers are encoded in binary. Polynomial reduction must be polynomial in the size of binary encoding.

Claim. $3\text{-SAT} \leq_{\text{P}} \text{SUBSET-SUM}$.

Proof. Given an instance Φ of 3-SAT, we construct an instance of SUBSET-SUM that has solution iff Φ is satisfiable.
Subset Sum

Construction. Given 3-SAT instance Φ with n variables and k clauses, form $2n + 2k$ decimal integers, each of $n+k$ digits, as illustrated below.

Claim. Φ is satisfiable iff there exists a subset that sums to W.

Pf. No carries possible.

$$\begin{align*}
C_1 &= \overline{x} \lor \overline{y} \lor \overline{z} \\
C_2 &= \overline{x} \lor \overline{y} \lor \overline{z} \\
C_3 &= \overline{x} \lor \overline{y} \lor \overline{z} \\
\end{align*}$$

dummies to get clause columns to sum to 4

$$\begin{array}{cccccc}
\text{x} & \text{y} & \text{z} & \text{C}_1 & \text{C}_2 & \text{C}_3 \\
1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 \\
2 & 0 & 0 & 0 & 0 & 1 \\
3 & 1 & 1 & 1 & 1 & 1 \\
\end{array}$$

decoded to get clause column to sum to 4

Bin Packing

BIN-PACKING. Given a set S of real numbers w_1, \ldots, w_n, $0 \leq w_i \leq 1$, and integer K, is there a partition of S into K subsets such that each subset adds up no more than 1?

Claim. **PARTITION** $\leq P$ **SUBSET-SUM.**

Pf.

Set Partition

PARTITION. Given a set of natural numbers w_1, \ldots, w_n, is there a subset that adds up to exactly half sum of all w_i?

Claim. **PARTITION** $\leq P$ **SUBSET-SUM.**

Pf. **PARTITION** is a special of **SUBSET-SUM.**

Claim. **SUBSET-SUM** $\leq P$ **PARTITION.**

Pf.

The Knapsack Problem

Input
- Capacity K
- n items with weights w_i and values v_i

Goal
- Output a set of items S such that
 - the sum of weights of items in S is at most K
 - and the sum of values of items in S is maximized
The Simplest Versions...

Can items be divided up such that only a portion is taken?

The thief can hold 5 pounds and has to choose from:
- 3 pounds of gold dust at $379.22/pound
- 6 pounds of silver dust at $188.89/pound
- 1/9 pound of platinum dust at $433.25/pound

Are all of the weights or total values identical?

The thief breaks into a ring shop where all of the rings weigh 1oz. He can hold 12 ounces; which should he take?

A Deceptively Hard Version...

What if each problem has the same price/pound?

This problem reduces to the bin-packing problem: we want to fit as many pounds of material into the knapsack as possible.

How can we approach this problem?

Example

The thief breaks into a gold refinery; he can steal from a selection of raw gold nuggets, each of the same value per pound. If he can carry 50 pounds, what selection would maximize the amount he carries out?

<table>
<thead>
<tr>
<th>Weight (pounds)</th>
<th>Value (dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>47.3</td>
<td>6</td>
</tr>
<tr>
<td>36.7</td>
<td>5.6</td>
</tr>
<tr>
<td>25.5</td>
<td>5.6</td>
</tr>
<tr>
<td>16.7</td>
<td>5.4</td>
</tr>
<tr>
<td>8.8</td>
<td>5.3</td>
</tr>
</tbody>
</table>

An Easier Version...

What if all of the sizes we are working with are relatively small integers? For example, if we could fit 10 pounds and:

- Object A is 2 pounds and worth $40
- Object B is 3 pounds and worth $50
- Object C is 1 pound and worth $100
- Object D is 5 pounds and worth $95
- Object E is 3 pounds and worth $30

We can use dynamic programming!
Defining subproblems

Define \(P(i, w) \) to be the problem of choosing a set of objects from the first \(i \) objects that maximizes value subject to weight constraint of \(w \).

\(V(i, w) \) is the value of this set of items

Original problem corresponds to \(V(n, K) \)

Recursive Definition:

\[
V(i, w) = \max (V(i-1, w-w_i) + v_i, V(i-1, w))
\]

- A maximal solution for \(P(i, w) \) either
 - uses item \(i \) (first term in max)
 - or does NOT use item \(i \) (second term in max)

\(V(0, w) = 0 \) (no items to choose from)

\(V(i, 0) = 0 \) (no weight allowed)

Decision Problem: Knapsack

KNAPSACK. Given a set of \(n \) objects, each object \(i \) has a weight \(w_i \) and value \(v_i \), and two numbers \(W \) and \(V \), is there a subset of objects whose total weight is no more than \(W \) and whose total value is no less than \(V \)?

Claim. PARTITION \(\leq \) \(_ _ \) KNAPSACK.

Pf.

The solution...

<table>
<thead>
<tr>
<th>Items</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>(w_A = 2)</td>
<td>(v_A = $40)</td>
<td>(w_B = 3)</td>
<td>(v_B = $50)</td>
<td>(w_C = 1)</td>
<td>(v_C = $100)</td>
</tr>
<tr>
<td>(w_D = 5)</td>
<td>(v_D = $95)</td>
<td>(w_E = 3)</td>
<td>(v_E = $30)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>0</th>
<th>0</th>
<th>$100</th>
<th>$100</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>$40</td>
<td>$40</td>
<td>$100</td>
<td>$100</td>
<td>$100</td>
</tr>
<tr>
<td>3</td>
<td>$40</td>
<td>$50</td>
<td>$140</td>
<td>$140</td>
<td>$140</td>
</tr>
<tr>
<td>4</td>
<td>$40</td>
<td>$50</td>
<td>$150</td>
<td>$150</td>
<td>$150</td>
</tr>
<tr>
<td>5</td>
<td>$40</td>
<td>$90</td>
<td>$150</td>
<td>$150</td>
<td>$150</td>
</tr>
<tr>
<td>6</td>
<td>$40</td>
<td>$90</td>
<td>$190</td>
<td>$195</td>
<td>$195</td>
</tr>
<tr>
<td>7</td>
<td>$40</td>
<td>$90</td>
<td>$190</td>
<td>$195</td>
<td>$195</td>
</tr>
<tr>
<td>8</td>
<td>$40</td>
<td>$90</td>
<td>$190</td>
<td>$235</td>
<td>$235</td>
</tr>
<tr>
<td>9</td>
<td>$40</td>
<td>$90</td>
<td>$190</td>
<td>$245</td>
<td>$245</td>
</tr>
<tr>
<td>10</td>
<td>$40</td>
<td>$90</td>
<td>$190</td>
<td>$245</td>
<td>$245</td>
</tr>
</tbody>
</table>

Integer Linear Programming

Types of Integer Linear Programming Models

- Graphical Solution for an All-Integer LP
- Spreadsheet Solution for an All-Integer LP
- Application Involving 0-1 Variables
- Special 0-1 Constraints
Types of Integer Programming Models

A linear program in which all the variables are restricted to be integers is called an integer linear program (ILP). If only a subset of the variables are restricted to be integers, the problem is called a mixed integer linear program (MILP). Binary variables are variables whose values are restricted to be 0 or 1. If all variables are restricted to be 0 or 1, the problem is called a 0-1 or binary integer program.

Example: All-Integer LP

Consider the following all-integer linear program:

\[
\begin{align*}
\text{Max} & \quad 3x_1 + 2x_2 \\
\text{s.t.} & \quad 3x_1 + x_2 \leq 9 \\
& \quad x_1 + 3x_2 \leq 7 \\
& \quad -x_1 + x_2 \leq 1 \\
& \quad x_1, x_2 \geq 0 \text{ and integer}
\end{align*}
\]

Example: LP Relaxation

Solving the problem as a linear program ignoring the integer constraints, the optimal solution to the linear program gives fractional values for both \(x_1\) and \(x_2\). From the graph on the previous slide, we see that the optimal solution to the linear program is:

\(x_1 = 2.5, \quad x_2 = 1.5, \quad z = 10.5\)
Example: All-Integer LP

Rounding Up
If we round up the fractional solution \(x_1 = 2.5, x_2 = 1.5\) to the LP relaxation problem, we get \(x_1 = 3\) and \(x_2 = 2\). From the graph on the next page, we see that this point lies outside the feasible region, making this solution infeasible.

Example: All-Integer LP

Rounding Down
By rounding the optimal solution down to \(x_1 = 2, x_2 = 1\), we see that this solution indeed is an integer solution within the feasible region, and substituting in the objective function, it gives \(z = 8\).

We have found a feasible all-integer solution, but have we found the optimal all-integer solution? The answer is NO! The optimal solution is \(x_1 = 3\) and \(x_2 = 0\) giving \(z = 9\), as evidenced in the next two slides.
Example: All-Integer LP

Complete Enumeration of Feasible ILP Solutions

There are eight feasible integer solutions to this problem:

1. \(x_1 \quad 0 \quad 0 \quad 0 \)
2. \(1 \quad 1 \quad 0 \quad 3 \)
3. \(2 \quad 0 \quad 6 \quad 0 \)
4. \(3 \quad 0 \quad 9 \quad 0 \quad \text{optimal solution} \)
5. \(0 \quad 1 \quad 2 \quad 0 \)
6. \(1 \quad 1 \quad 5 \quad 0 \)
7. \(2 \quad 1 \quad 8 \quad 0 \)
8. \(1 \quad 2 \quad 7 \quad 0 \)

Special 0-1 Constraints

When \(x_i \) and \(x_j \) represent binary variables designating whether projects \(i \) and \(j \) have been completed, the following special constraints may be formulated:

- At most \(k \) out of \(n \) projects will be completed:
 \[\sum_{i=1}^{n} x_i \leq k \]
- Project \(j \) is conditional on project \(i \):
 \[x_j \leq x_i \]
- Project \(i \) is a co-requisite for project \(j \):
 \[x_j \leq x_i \]
- Projects \(i \) and \(j \) are mutually exclusive:
 \[x_i + x_j \leq 1 \]

Decision Problem: 0-1 Programming

0-1 PROGRAMMING. Given a \(n \) by \(m \) matrix \(A \), a vector \(B \) of \(m \) numbers, a vector \(X \) of \(n \) variables, is there a binary solution of \(X \) such that \(AX \leq B \)?

Claim. 3-SAT \(\leq \) 0-1 PROGRAMMING.

Pf.

Scheduling With Release Times

SCHEDULE-RELEASE-TIMES. Given a set of \(n \) jobs with processing time \(t_i \), release time \(r_i \), and deadline \(d_i \), is it possible to schedule all jobs on a single machine such that job \(i \) is processed with a contiguous slot of \(t_i \) time units in the interval \([r_i, d_i]\)?

Claim. SUBSET-SUM \(\leq \) SCHEDULE-RELEASE-TIMES.

Pf. Given an instance of SUBSET-SUM \(w_1, \ldots, w_n \) and target \(W \),

- Create \(n \) jobs with processing time \(t_i = w_i \), release time \(r_i = 0 \), and no deadline \(d_i = 1 + \sum w_j \).
- Create job 0 with \(t_0 = 1 \), release time \(r_0 = W \), and deadline \(d_0 = W+1 \).

Can schedule jobs 1 to \(n \) anywhere but \([W, W+1]\)
Dick Karp (1972)
1985 Turing Award

Polynomial-Time Reductions

3-SAT

INDEPENDENT SET, DIS-HAM-CYCLE, GRAPH 3-COLOR, SUBSET-SUM

VERTEX COVER, HAM-CYCLE, PLANAR 3-COLOR, SCHEDULING

SET COVER, TSP

packing and covering, sequencing, partitioning, numerical