Dynamic Programming algorithms for all-pairs Shortest Paths

“Shortest Path”

Given graph G=(V,E) with positive weights W(u,v) on the edges (u, v), and given two vertices a and b.
Find the “shortest path” from a to b (where the length of the path is the sum of the edge weights on the path). Perhaps we should call that the minimum weight path!

Greedy algorithm

Start at a, and greedily construct a path that goes to the next closest vertex from a, until you reach b.

Dijkstra’s Algorithm: O(n + m lg n)

Problem 1: it doesn’t work correctly if negative weights are presented.

Problem 2: To compute the shortest paths between all pairs, we have to call Dijkstra’s algorithm n times.
Dynamic Programming

Subproblem Property: The problem can be recursively defined by the subproblem of the same kind.

Trade space for time: A table is used to store the solutions of the subproblems (the meaning of "programming" before the age of computers is "table").

Designing a DP solution

How are the subproblems defined?
Where are the solutions stored?
How are the base values computed?
How do we compute each entry from other entries in the table?
What is the order in which we fill in the table?

Two DP algorithms for All-pairs shortest paths

Both are correct. Both produce correct values for all-pairs shortest paths.
The difference is the subproblem formulation, and hence in the running time.
The reason both algorithms are given is to remind you how to do DP algorithms!
But, be prepared to provide one or both of these algorithms, and to be able to apply it to an input (on some exam, for example).
Dynamic Programming

First attempt: let \(1, 2, \ldots, n\) denote the set of vertices.

Subproblem formulation:
\[M[i,j,k] = \min \text{ length of any path from } i \text{ to } j \text{ that uses at most } k \text{ edges.} \]

All paths have at most \(n-1\) edges, so \(1 \leq k \leq n-1\).

When \(k=1\), \(M[i,j,1] = w[i,j]\), the edge weight from \(i\) to \(j\).

Minimum paths from \(i\) to \(j\) are found in \(M[i,j,n-1]\)

Question: How to set \(M[i,j,k]\) from other entries?

How to set \(M[i,j,k]\) from other entries, for \(k>1\)?

Consider a minimum weight path from \(i\) to \(j\) that has at most \(k\) edges.

1. Case 1: The minimum weight path has at most \(k-1\) edges.
 - \(M[i,j,k] = M[i,j,k-1]\)

2. Case 2: The minimum weight path has exactly \(k\) edges.
 - \(M[i,j,k] = \min\{M[i,x,k-1] + w(x,j) : x \in V\}\)

Combining the two cases:
\[M[i,j,k] = \min\{\min\{M[i,x,k-1] + w(x,j) : x \in V\}, M[i,j,k-1]\} \]

Finishing the design

Where is the answer stored?

How are the base values computed?

How do we compute each entry from other entries?

What is the order in which we fill in the matrix?

Running time?
Pseudo-Code and Running time analysis

for j = 1 to n for i = 1 to n
 M[i,j,1] = W[i,j]
for k = 2 to n-1
 for j = 1 to n
 for i = 1 to n
 M[i,j,k] = min(min{M[i,x,k-1] + w(x,j): x in V}, M[i,j,k-1])

How many entries do we need to compute? $O(n^3)$
1 ≤ i ≤ n; 1 ≤ j ≤ n; 1 ≤ k ≤ n-1

How much time does it take to compute each entry? $O(n)$
Total time: $O(n^4)$

Next DP approach

Try a new subproblem formulation!

$Q(i,j,k) =$ minimum weight of any path from i to j that uses internal vertices drawn from $\{1,2,...,k\}$.

Designing a DP solution

How are the subproblems defined?
Where is the answer stored?
How are the base values computed?
How do we compute each entry from other entries?
What is the order in which we fill in the matrix?
Q[i,j,k] = minimum weight of any path from i to j that uses internal vertices (other than i and j) drawn from \{1,2,...,k\}.

Base cases: Q[i,j,0] = w[i,j] for all i,j

Minimum paths from i to j are found in Q[i,j,n]

Once again, O(n^3) entries in the matrix

Solving subproblems

Q[i,j,k] = minimum weight of any path from i to j that uses internal vertices drawn from \{1,2,...,k\}.

Such minimum cost path either includes vertex k or does not include vertex k.

If the minimum cost path P includes vertex k, then you can divide P into the path P_1 from i to k, and P_2 from k to j.

What is the weight of P_1?
What is the weight of P_2?

Thus the weight of P is Q[i,k,k-1] + Q[k,j,k-1].
New DP algorithm

for j = 1 to n
 for i = 1 to n
 Q[i,j,0] = w[i,j]
for k = 1 to n
 for j = 1 to n
 for i = 1 to n
 Q[i,j,k] = min{Q[i,j,k-1], Q[i,k,k-1] + Q[k,j,k-1]}

Each entry only takes $O(1)$ time to compute
There are $O(n^3)$ entries
Hence, $O(n^3)$ time.

Reusing the space

// Use R[i,j] for Q[i,j,0], Q[i,j,1], ..., Q[i,j,n]
for j = 1 to n
 for i = 1 to n
 R[i,j] = W[i,j];
for k = 1 to n
 for j = 1 to n
 for i = 1 to n
 R[i,j] = min{R[i,j], R[i,k] + R[k,j]}

How to check negative cycles

// Use R[i,j] for Q[i,j,0], Q[i,j,1], ..., Q[i,j,n]
for j = 1 to n
 for i = 1 to n
 R[i,j] = W[i,j];
for k = 1 to n
 for j = 1 to n
 for i = 1 to n
 R[i,j] = min{R[i,j], R[i,k] + R[k,j]};
 for i = 1 to n
 if (R[i,i] < 0) print("There is a negative cycle");