Regular Languages and Finite-State Automata

Formal Languages

- Σ^* for the set of all words over Σ
- Languages = subsets of Σ^*
- Language-forming operations
 - $L_1 \cup L_2$
 - $L_1 \cdot L_2$
 - L^*_1 (Kleene closure)

Regular Expressions

- Inductive definition:
- Base cases:
 - \emptyset is regular expression (over Σ) and denotes language \emptyset
 - ϵ is regular expression (over Σ) and denotes language $\{\epsilon\}$
 - a in Σ is regular expression (over Σ) and denotes language $\{a\}$.
Regular Expressions

- Inductive cases:
 - Assume r_1 and r_2 are regular expressions and denote L_1 and L_2, resp.
 - $(r_1 | r_2)$ is a regular expression and denotes $L_1 \cup L_2$.
 - $(r_1 r_2)$ is a regular expression and denotes $L_1 L_2$.
 - (r_1^*) is a regular expression and denotes L_1^*.

Regular Expressions Denote Languages

- a^* denotes language $\{a^n | n \geq 0\}$
- $(a).b$ or just ab denotes unit language $\{ab\}$
- a^*b^* denotes $\{a^*b^m | n, m \geq 0\}$
- a^*b^* denotes $\{aabb\}$
 - a^* not regular expression
 - $a^* \ b^*$ denotes $\{a^n b^m | n, m \geq 0\}$
 - a^*b^* denotes $\{bb, abb\}$

Regular Expressions with practical convention

<table>
<thead>
<tr>
<th>Character</th>
<th>Meaning</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]</td>
<td>alternatives</td>
<td>/[aeiou]/, /m[ae]n/</td>
</tr>
<tr>
<td>-</td>
<td>range</td>
<td>/[a-z]/</td>
</tr>
<tr>
<td>[^]</td>
<td>not</td>
<td>/["pbm]/, /["ox]s/</td>
</tr>
<tr>
<td>?</td>
<td>optionality</td>
<td>/Kath?mandu/</td>
</tr>
<tr>
<td>*</td>
<td>zero or more</td>
<td>/baa*!/</td>
</tr>
<tr>
<td>+</td>
<td>one or more</td>
<td>/baa+!/</td>
</tr>
<tr>
<td>.</td>
<td>any character</td>
<td>/cat[aeiou]/</td>
</tr>
<tr>
<td>^, $</td>
<td>start, end of line</td>
<td>|?^</td>
</tr>
<tr>
<td>\</td>
<td>not special character</td>
<td>/|?^</td>
</tr>
<tr>
<td></td>
<td></td>
<td>alternate strings</td>
</tr>
</tbody>
</table>
|) | substring | /cit\(yies\)/ | etc.
Regular Languages

- L be a language over alphabet Σ, i.e., $L \subseteq \Sigma^*$. Then L said to be regular language if L denoted by some regular expression over Σ.
- Σ finite alphabet and L_1 and L_2 regular languages over Σ. Then $L_1 \cup L_2$, $L_1 \cap L_2$, and L_1^* are also regular.

Remarks

- Σ finite alphabet and w any word over Σ. Then unit language \{w\} regular.
- Any finite language over Σ regular.

Deterministic Finite-State Automata

![Deterministic Finite-State Automata](image)
Determinism

• Determinism means that, within any state diagram for FSA, path labeled by given word w unique: for word $w \in \Sigma^*$, there is exactly one path starting at q_0 and labeled by w.

Transition Functions
Formal Definition

- FSA is quintuple \(\langle \Sigma, Q, q_{init}, F, \delta_M \rangle \)
- \(\Sigma \) is input alphabet
- \(Q \) is finite, nonempty set of states
- \(q_{init} \in Q \) initial state or start state
- \(F \subseteq Q \) is a (possibly empty) set of accepting or terminal states
- \(\delta_M : Q \times \Sigma \rightarrow Q \) transition function (total)

Word Acceptance

- Deterministic finite-state automaton \(M \) accepts word \(w \in \Sigma^* \) if unique path starting at \(q_{init} \) and labeled by \(w \) leads to some member of \(F \), i.e., to some accepting state of \(M \).

Language Acceptance

- The language accepted by \(M \) is the set of all and only those words over \(\Sigma \) that are accepted by \(M \).
- \(L(M) \) for the language accepted by \(M \).
- FSAs are language acceptors only
A Nondeterministic Machine

Figure 9.3.3

Nondeterminism

- $\delta_M: Q \times \Sigma \rightarrow Q$ is a transition mapping
- Assumed to be total ("fully defined") but permitted to be multivalued

Word Acceptance

- Word $w \in \Sigma^*$ accepted by M provided there exists path, labeled by w, in the state diagram of M leading from q_{init} to terminal state
- Compare deterministic case
Word Acceptance

- *Word* $w \in \Sigma^*$ accepted by M provided there exists path, labeled by w, in the state diagram of M leading from q_{init} to terminal state
- Compare deterministic case

Language Acceptance

- The *language accepted by nondeterministic* is set of words accepted by M.

Figure 9.3.4

Nondeterministic Design Often Easier

Figure 9.3.4

The nondeterministic finite-state automation: acceptor of regular expression $(ba^*)^*$
Goal

• Suppose given nondeterministic M that accepts L. We seek algorithm for constructing, on basis of M, a new deterministic M' that accepts L.

Subset Construction

• States of nondeterministic M' will correspond to nonempty sets of states of deterministic M.
• Where q_0 is start state of M, use $\{q_0\}$ as start state of M'.
• Accepting states of M' will be those state-sets containing at least one accepting state of M.

Subset Construction (cont.)

• For each state-set S and for each s in M's alphabet, we draw an arc labeled s from state S to that state-set (call it $S_{s,suc}$) consisting of all and only the s-successors of members of S.
• Eliminate any state-set, as well as all arcs incident upon it, such that there is no path leading to it from $\{q_0\}$.
Example

- M has 4 states. So M' will have $2^4 - 1$ state sets.
- Terminal state(-sets) marked by bullet
- a-arc from state $\{q_0, q_1\}$ will lead to state $\{q_1, q_2, q_3\}$ in new state diagram for M'

Theorem (Kleene)

- Let M be nondeterministic FSA accepting L. Then there exists deterministic finite-state automaton M' that accepts L as well.

Theorem

- Any finite language is FSA-acceptable
- Example $L = \{abba, abb, abab\}$
Finite-State Automata with ε

- Executing arcs labeled ε do not advance input
- ε-arcs may or may not introduce nondeterminism

Example

This FSA accepts the language $L(a^*b^*c^*)$.

Figure 9.7.1

Equivalence Result

- Let M be FSA with ε-moves. Then there exists FSA M' with no ε-moves such that $L(M) = L(M')$
Equivalence of FA and RE

- Finite Automata and Regular Expressions are equivalent. To show this:
 - Show we can express a DFA as an equivalent RE
 - Show we can express a RE as an ε-NFA. Since the ε-NFA can be converted to a DFA and the DFA to an NFA, then RE will be equivalent to all the automata we have described.

Turning a DFA into a RE

- Theorem: If $L=L(A)$ for some DFA A, then there is a regular expression R such that $L=L(R)$.
- Proof
 - Construct GNFA, Generalized NFA
 - State Elimination
 - We’ll see how to do this next, easier than inductive construction, there is no exponential number of expressions

DFA to RE: State Elimination

- Eliminates states of the automaton and replaces the edges with regular expressions that includes the behavior of the eliminated states.
- Eventually we get down to the situation with just a start and final node, and this is easy to express as a RE
State Elimination

- Consider the figure below, which shows a generic state s about to be eliminated. The labels on all edges are regular expressions.
- To remove s, we must make labels from each q_i to p_1 up to p_m that include the paths we could have made through s.

![State Elimination Diagram]

Note: q and p may be the same state!

DFA to RE via State Elimination (1)

1. Starting with intermediate states and then moving to accepting states, apply the state elimination process to produce an equivalent automaton with regular expression labels on the edges.
 - The result will be a one or two state automaton with a start state and accepting state.

DFA to RE State Elimination (2)

2. If the two states are different, we will have an automaton that looks like the following:

![DFA to RE Diagram]

We can describe this automaton as: $(R+SU*T)*SU*$
DFA to RE State Elimination (3)

3. If the start state is also an accepting state, then we must also perform a state elimination from the original automaton that gets rid of every state but the start state. This leaves the following:

We can describe this automaton as simply R^*.

DFA to RE State Elimination (4)

4. If there are n accepting states, we must repeat the above steps for each accepting states to get n different regular expressions, $R_1, R_2, \ldots R_n$. For each repeat we turn any other accepting state to non-accepting. The desired regular expression for the automaton is then the union of each of the n regular expressions: $R_1 \cup R_2 \ldots \cup R_n$

DFA $\xrightarrow{\rightarrow}$ RE Example

- Convert the following to a RE

- First convert the edges to RE’s:
DFA \rightarrow RE Example (2)

- Eliminate State 1:

 ![Diagram of DFA with State 1 eliminated]

 - To:
 - Note edge from 3\rightarrow3

 Answer: $(0+10)^*11(0+1)^*$

Second Example

- Automata that accepts even number of 1’s

 ![Diagram of automata accepting even number of 1’s]

- Eliminate state 2:

 ![Diagram of automata with state 2 eliminated]

Second Example (2)

- Two accepting states, turn off state 3 first

 ![Diagram of automata with state 3 turned off]

This is just 0^*; can ignore going to state 3 since we would “die”
Second Example (3)

• Turn off state 1 second:

![Diagram of automaton]

This is just $0^*10^*1(0+10^*1)^*$

Combine from previous slide to get

$0^* + 0^*10^*1(0+10^*1)^*$

Converting a RE to an Automata

• We have shown we can convert an automata to a RE. To show equivalence we must also go the other direction, convert a RE to an automaton.

• We can do this easiest by converting a RE to an ε-NFA
 – Inductive construction
 – Start with a simple basis, use that to build more complex parts of the NFA

RE to ε-NFA

• Basis:

 $R=\varepsilon$
 $R=\emptyset$

Next slide: More complex RE's
RE to \(\varepsilon \)-NFA Example

- Convert \(R = (ab + a)^* \) to an NFA
 - We proceed in stages, starting from simple elements and working our way up

 - **a**

 - **b**

 - **ab**

RE to \(\varepsilon \)-NFA Example (2)

- **ab + a**

- **(ab + a)^***
What have we shown?

• Regular expressions and finite state automata are really two different ways of expressing the same thing.
• In some cases you may find it easier to start with one and move to the other
 – E.g., the language of an even number of one’s is typically easier to design as a NFA or DFA and then convert it to a RE