Trees

22c:19
Fall 2009

Task Tree

- Good for directed search tasks
- Subtree filtering (+/-)
- Not good for learning structure
- No attributes
- Apx 50 items visible
- Lose path to root for deep nodes
- Scroll bar!

Directory Tree
Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
- Internal nodes: operators
- External nodes: operands
- Example: arithmetic expression tree for the infix expression:
 \((2 \times (a - 1) + (3 \times b))\)
- Note: infix expressions require parentheses
- \((2 \times a) - (1+3) \times b\) is a different expression tree

Tree structure

Treemaps on the Web

- People Map: http://www.truepeers.com/
Definition of a tree

- A graph is called a **tree** if it is connected and has no cycles (acyclic, circuit-free).
- An acyclic graph is also called **forest**.

![Diagram of a tree](image)

Definition of a Rooted Tree

1. A single node, with no edges, is a tree. The root of the tree is its unique node.
2. Let \(T_1, \ldots, T_k \) \((k \geq 1)\) be trees with no nodes in common, and let \(r_1, \ldots, r_k \) be the roots of those trees, respectively. Let \(r \) be a new node. Then there is a tree \(T \) consisting of the nodes and edges of \(T_1, \ldots, T_k \), the new node \(r \) and the edges \(\langle r, r_1 \rangle, \ldots, \langle r, r_k \rangle \). The root of \(T \) is \(r \) and \(T_1, \ldots, T_k \) are called the subtrees of \(T \).

Recursive definition

Before:
The trees \(T_1, \ldots, T_k \), with roots \(r_1, \ldots, r_k \)

After:
new tree \(T \) rooted at \(r \) with subtrees \(T_1, \ldots, T_k \)
Tree Terminology

- r is called the parent of r_1, \ldots, r_k
- r_1, \ldots, r_k are the children of r
- r_1, \ldots, r_k are the siblings of one another
- Node v is a descendant of u if
 - $u = v$ or
 - v is a descendant of a child of u
 - A path exists from u to v.

Tree terminology

- Every node is a descendant of itself.
- If v is a descendant of u, then u is an ancestor of v.
- Proper descendants:
 - The descendants of a node, other than the node itself.
- Proper ancestors
 - The ancestors of a node, other than the node itself.

Theorem 11.5.2

- Every tree of n vertices has $n-1$ edges.

- Pf. Induction on n
- Base case: $n=1$: a single node has 0 edges.
- Induction Hypothesis: Any tree of $m < n$ nodes has $m-1$ edges.
- Inductive case: Let the root of tree T of n nodes be r. Suppose r has k subtrees T_1, T_2, \ldots, T_k. If each subtree T_i has a_i nodes, then by induction hypothesis, T_i has $a_i - 1$ edges. So T has $k \times (a_1 - 1) + (a_2 - 1) + \ldots + (a_k - 1) = a_1 + a_2 + \ldots + a_k = n - 1$ edges.
Tree terminology

A path from \(u \) to \(v \). Node \(u \) is the ancestor of node \(v \).

Tree terminology

- \(w \) has depth 2
- \(u \) has height 3
- tree has height 4
Important Properties

Theorem: Let T be a graph of n nodes. The following statements are logically equivalent:

1. T is a tree.
2. There is a unique path connecting any pair of vertices in T.
3. T is connected and has $n - 1$ edges.
4. T is acyclic and has $n - 1$ edges.

Pf.

$(1) \Leftrightarrow (2)$

\Rightarrow If T is a tree, then T is connected and there must be a path between any two vertices. If there are two paths between two vertices, then the two paths define a cycle, which is impossible.

\Leftarrow If there is a unique path between any two vertices, then T is connected and has no cycles.

$(1) \Leftrightarrow (3)$

\Rightarrow If T is a tree, then it is connected, acyclic and has $n - 1$ edges, so (3) is true.

\Leftarrow If T is connected and has a cycle, we remove one edge in the cycle without disconnecting T. After breaking all cycles, we obtain a tree T'. Since T' has $n - 1$ edges, the same as T, so no edges are ever removed from T, i.e., T cannot have any cycle.
Important Properties

Theorem: Let T be a graph of n nodes. The following statements are logically equivalent:

1. T is a tree.
2. There is a unique path connecting any pair of vertices in T.
3. T is connected and has n – 1 edges.
4. T is acyclic and has n – 1 edges.

Pf. (1) ⇔ (4)

⇒ If T is a tree, then it is connected, acyclic and has n – 1 edges, so (4) is true.

⇐ If T is acyclic and has k components, say T₁, T₂, ..., Tₖ. Each Tᵢ is a tree which has aᵢ nodes and aᵢ – 1 edges. So T has

\[(a₁ – 1) + (a₂ – 1) + ... + (aₖ – 1) = a₁ + a₂ + ... + aₖ – k = n – k \text{ edges.}\]

Since we also know T has n – 1 edges. n – 1 = n – k, thus k = 1. So T has only one component.

Special kinds of trees

- Ordered vs. unordered
- Binary tree
- Empty vs. non-empty
- Full
- Perfect
- Complete

Ordered trees

- Have a linear order on the children of each node.
- That is, we can clearly identify a 1ˢᵗ, 2ⁿᵈ, ..., kᵗʰ child.
- An unordered tree doesn’t have this property
Binary tree

- An ordered tree with at most two children for each node.
- If node has two child, the 1st is called the left child, the 2nd is called the right child
- If only one child, it is either the right child or the left child

Two trees are not equivalent...One has only a left child; the other has only a right child

Empty binary tree

- Convenient to define an empty binary tree, written \(\Lambda \), for use in this definition:
 - A binary tree is either \(\Lambda \) or is a node with left and right subtrees, each of which is a binary tree.

Full binary tree

- No nodes with only one child
 - Each node either is a leaf or has 2 children
- Theorem 11.5.5: \(\# \) leaves = \(\# \) non-leaves + 1

- Pf. Let \(n \) be the total number of nodes and \(k \) be \(\# \) non-leaves. Since each non-leaf node has two children, the \(\# \) of nodes having a parent is \(2k \). Each node either is the root or has a parent. So \(n = 2k + 1 \). So \(\# \) leaves = \(n - k = (2k+1) - k = k + 1 \).
Full binary tree
• No nodes with only one child
 — Each node either is a leaf or has 2 children
• Theorem 11.5.5: \(\# \text{leaves} = \# \text{non-leaves} + 1 \)

 Another Proof: Induction on the structure of a tree.
 • Base case: \(T \) has a single node: 1 leaf and 0 non-leaf.
 • Induction Hypothesis: For any tree with less than \(n \) nodes, the theorem is true.
 • Inductive case: \(T \) has two subtrees, \(T_1 \) and \(T_2 \). By the hypothesis, \(T_1 \) has \(a \) non-leaves and \(a+1 \) leaves. \(T_2 \) has \(b \) non-leaves and \(b+1 \) leaves. So \(T \) has \(a+b+1 \) non-leaves and \(a+b+2 \) leaves.

Tree terminology & properties
• Height of a node in a tree
 — Length of the longest path from that node to a leaf
 — The height of the root is the height of the tree.
• Depth of a node in a tree
 — Length of the path from the root of the tree to the node

Perfect binary trees
A full binary tree in which all leaves have the same depth
Perfect binary tree

- A full binary tree in which all leaves have the same depth
- Perfect binary tree of height h has:
 - $2^{h+1}-1$ nodes
 - 2^h leaves
 - 2^h-1 non-leaves
- Interesting because it is “fully packed”, the shallowest tree that can contain that many nodes. Often, we’ll be searching from the root. Such a shallow tree gives us minimal number of accesses to nodes in the tree.

Tree terminology

- Forest
 - A finite set of trees
 - In the case of ordered trees, the trees in the forest must have a distinguishable order as well.

Tree Operations

- $\text{Parent}(v)$
- $\text{Children}(v)$
- $\text{FirstChild}(v)$
- $\text{RightSibling}(v)$
- $\text{LeftSibling}(v)$
- $\text{LeftChild}(v)$
- $\text{RightChild}(v)$
- $\text{isLeaf}(v)$
- $\text{Depth}(v)$
- $\text{Height}(v)$
Parent(v)

- Return the parent of node \(v \), or \(\Lambda \) if \(v \) is the root.

Children(v)

- Return the set of children of node \(v \) (the empty set, if \(v \) is a leaf).

FirstChild(v)

- Return the first child of node \(v \), or \(\Lambda \) if \(v \) is a leaf.
RightSibling(v)
• Return the right sibling of v, or Λ if v is the root or the rightmost child of its parent.

LeftSibling(v)
• Return the left sibling of v, or Λ if v is the root or the leftmost child of its parent.

LeftChild(v)
• Return the left child of node v;
• Return Λ if v has no left or right child.
RightChild(v)

- Return the right child of node v;
- return Λ if v has no right child

isLeaf(v)

- Return **true** if node v is a leaf, **false** if v has a child

Depth(v)

- Return the depth of node v in the tree.
Height(v)

- Return the height of node v in the tree.

Arithmetic Expression Tree

- Binary tree associated with an arithmetic expression
- Internal nodes: operators
- External nodes: operands
- Example: arithmetic expression tree for the infix expression:
 - \((2 \times (a - 1) + (3 \times b))\)
- Note: infix expressions require parentheses
- \((2 \times a) - (1+3) \times b)\) is a different expression tree

Evaluating Expression Trees

```plaintext
function Evaluate(ptr P): integer
/* return value of expression represented by tree with root P */
if isLeaf(P) return Label(P)
else
    xL <- Evaluate(LeftChild(P))
    xR <- Evaluate(RightChild(P))
    op <- Label(P)
    return ApplyOp(op, xL, xR)
```

Example

- Evaluate (A)
 - Evaluate(B) \(\Rightarrow \) 2
 - Evaluate(D)
 - Evaluate(H) \(\Rightarrow \) a
 - Evaluate(I) \(\Rightarrow \) 1

\[\text{ApplyOp}(\cdot, a, 1) \Rightarrow a - 1 \]
\[\text{ApplyOp}(x, 2, (a - 1)) \Rightarrow 2 \times (a - 1) \]

- Evaluate(C)
 - Evaluate(F) \(\Rightarrow \) 3
 - Evaluate(G) \(\Rightarrow \) b
 - ApplyOp(\cdot, (2 \times (a - 1)), (3 \times b)) \(\Rightarrow \)

\[(2 \times (a - 1)) + (3 \times b) \]

Traversals

- Traverse = any well-defined ordering of the visits to the nodes in a tree
 - **PostOrder** traversal
 - Node is considered after its children have been considered
 - **PreOrder** traversal
 - Node is considered before its children have been considered
 - **InOrder** traversal (for binary trees)
 - Consider left child, consider node, consider right child

PostOrder Traversal

procedure PostOrder(ptr P):

```plaintext```

foreach child Q of P, in order, do

PostOrder(Q)

Visit(P)
```

PostOrder traversal gives:

2, a, 1, -, x, 3, b, x, +

Nice feature: unambiguous ... doesn't need parentheses

-- often used with scientific calculators
-- simple stack-based evaluation
Evaluating PostOrder Expressions

procedure PostOrderEvaluate($e_1, ..., e_n$):

 for i from 1 to n do

 if e_i is a number, then push it on the stack

 else

 • Pop the top two numbers from the stack
 • Apply the operator e_i to them, with the right operand being the first one popped
 • Push the result on the stack

PreOrder Traversal

procedure PreOrder(ptr P):

 Visit(P)

 foreach child Q of P, in order, do

 PreOrder(Q)

PreOrder Traversal:

+ x 2, -, a, 1, x, 3, b

Nice feature: unambiguous, don’t need parentheses

— Outline order

InOrder Traversal

procedure InOrder(ptr P):

 // P is a pointer to the root of a binary tree

 if $P = \Lambda$ then return

 else

 InOrder(LeftChild(P))
 Visit(P)
 InOrder(RightChild(P))

InOrder Traversal:

$2 \times a – 1 + 3 \times b$