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First-Order Logic

Part two

Logic in Computer Science

Prenex Normal Form

• A formula containing no quantifiers at all, or

• A formula of the form
Q1x1 Q2x2 … Qnxn P

where Qi are either the universal or existential 
quantifier, xi are variables and P is free of 
quantifiers.

e.g., x y (p(x)  q(y)).
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Conversion to Prenex Normal Form

1. Replace implications, biconditionals, etc., by 
and-or-negation. E.g., (A  B) by  (A B)

2. Move  “inwards” until there are no quantifiers 
in the scope of a negation, by deMorgan’s laws.

3. Rename variables so each variable following a 
quantifier has a unique name.

4. Move quantifiers to the front of the sentence, 
without changing their order.

• Prenex normal forms are not unique

Example of Prenex NF

x ((C(x)  y (T(y)  L(x, y)))  y (D(y)  B(x, y)))

x ((C(x)  y (T(y)  L(x, y)))  z (D(z)  B(x, z)))

x ( y (C(x)  T(y)  L(x, y))  z (D(z)  B(x, z)))

xy ((C(x)  T(y)  L(x, y))  z (D(z)  B(x, z)))

xyz ((C(x)  T(y)  L(x, y))  (D(z)  B(x, z)))

If you want to restore the implication:

xyz (C(x)  T(y)  L(x, y))  (D(z)  B(x, z))

Another prenex normal form is:

xzy (C(x)  T(y)  L(x, y))  (D(z)  B(x, z))
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Skolemization: Removal of Quantifiers

1. Obtain a Prenex NF B = Q1x1 Q2x2 … Qnxn P
2. For j := 1 to n do
3. If (Qj is ) remove Qj xj from B
4. If (Qj is ) remove Qj xj and replace xj by f(V), 

where V is the set of free variables in B
Example: A=xzy (C(x)  T(y)  L(x,y))  (D(z)  B(x,z))

B := A

1. B := zy (C(x)  T(y)  L(x, y))  (D(z)  B(x, z))

2. B := y (C(x)  T(y)  L(x, y))  (D(f(x))  B(x, f(x)))

3. B := (C(x)  T(y)  L(x, y))  (D(f(x))  B(x, f(x)))

• Theorem: A  B, i.e., A and B are equally satisfiable.

CNF: Conjunction Normal Forms

1. Obtain a PNF of A: B = Q1x1 Q2x2 … Qnxn P
2. Remove quantifiers by Skolemization
3. Convert the formula into CNF as in PL

Example: 

• A =xzy (C(x)  T(y)  L(x, y))  (D(z)  B(x, z))

• B = (C(x)  T(y)  L(x, y))  (D(f(x))  B(x, f(x)))

• C = { (-C(x) | -T(y) | -L(x, y) | D(f(x)),

(-C(x) | -T(y) | -L(x, y) | B(x, f(x)) }

• Theorem: A  C, i.e., A and C are equally satisfiable.
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CNF: No Need to go through PNF

1. Obtain a NNF of A: B = NNF(A)
2. Remove quantifiers by Skolemization
3. Convert the formula into CNF as in PL

Example: 

• A = xzy (C(x)  T(y)  L(x, y))  (D(z)  B(x, z))

• B = xzy (C(x)  T(y)  L(x, y))  (D(z)   B(x, z))

• C = (C(c)  T(f(z))  L(c, f(z)))  (D(z)   B(c, z))

• C is already a CNF.

• Theorem: A  C, i.e., A and C are equally satisfiable.

Definition of 
• We write A  B to denote that A is satisfiable iff B is 

satisfiable.

• A  B implies A  B, but the inverse is not true.

Example: Consider A = y p(x, y) and B = p(x, f(y)). 

For the interpretation I = (Z, {>}, {f}), where Z is the set of all 
integers and f(x) = x+1, A is true in I, but B is false in I. So it’s not 
true that A  B.

(only-if part) Suppose A is true in I = (D, {p}, {}). We extend I to I’ 
by introducing a function f: D  D such that f(d1) = d2 if p(d1, d2) is 
true in I’ = (D, {p}, {f}). 

(if-part) If I” = (D, {p}, {f}) is a model of B, then it is easy to see 
that A is also true in I”. 

So it is true that A  B. 
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Converting formulas to CNF
1. Obtain NNF (negation normal form) A

a. Get rid of  or 
b. Get rid of 
c. Push  downward

2. Remove quantifiers by Skolemization to get B
a. Rename quantified variables
b. Replace existentially quantified variables by Skolem

constants/functions.
c. Discard all universal quantifiers

3. Convert B into clause set C
a. Convert B into CNF
b. Convert CNF into clause set
c. Standardize the variables in clauses

Converting formulas to CNF
1a. Eliminate all ↔ connectives 

(P ↔ Q)  ((P  Q) ^ (Q  P)) 

1b. Eliminate all  connectives 
(P  Q)  (P  Q) 

1c. Reduce the scope of each negation symbol to a single 
predicate 
P  P

(P  Q) P  Q

(P  Q) P  Q

x P  x P

 x P  x P 

9

10



6

Converting formulas to clausal form
Skolem constants and functions

2a. Standardize variables: rename all variables so that each 
quantifier has its own unique variable name

2b. Replace  existential quantified variables by introducing 
Skolem constants or functions

x P(x) is changing to P(C) 

C is a Skolem constant (a brand-new constant symbol that is 
not used in any other sentence)

x y P(x,y) is changing to P(x, f(x))

since  is within scope of a universally quantified variable, 
use a Skolem function f to construct a new value that 
depends on the universally quantified variable.

f must be a brand-new function name not occurring anywhere 

Converting formulas to clausal form

2c. Remove universal quantifiers by (1) moving them 
all to the left end; (2) making the scope of each the 
entire sentence; and (3) dropping the “prefix” part
Example: x P(x) is changing to P(x)

3a. Put into conjunctive normal form (conjunction of 
disjunctions) using distributive and associative laws
(P  Q)  R  (P  R)  (Q  R)

(P  Q)  R  (P  Q  R)

3b. Split conjuncts into separate clauses

3c. Standardize variables so each clause contains only 
variable names that do not occur in any other clause
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An example
x (P(x)  ((y)(P(y)  P(f(x,y)))  (y)(Q(x,y)  P(y))))

1a. Eliminate 
1b. Eliminate 
x (P(x)  (y (P(y)  P(f(x, y)))  y (Q(x, y)  P(y))))

1c Reduce scope of negation

x (P(x)  (y (P(y)  P(f(x, y)))  y (Q(x, y)  P(y)))) 

2a. Standardize variables

x (P(x)  (y (P(y)  P(f(x, y)))  z (Q(x, z)  P(z)))) 

2b. Eliminate existential quantification

x (P(x) (y (P(y)  P(f(x, y))) (Q(x, g(x))  P(g(x))))) 

2c. Drop universal quantification symbols

(P(x)  ((P(y)  P(f(x, y)))  (Q(x, g(x))  P(g(x))))) 

An Example (continued)

3a. Convert to conjunction of disjunctions

(P(x) | P(y) | P(f(x,y)))  (P(x) | Q(x,g(x))) 
(P(x) | P(g(x))) 

3b. Create separate clauses

(P(x) | P(y) | P(f(x,y))) 

(P(x) | Q(x, g(x))) 

(P(x) | P(g(x)))

3c. Standardize variables

(P(x) | P(y) | P(f(x,y))) 

(P(z) | Q(z, g(z))) 

(P(w) | P(g(w)))
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Question: Given a finite set F of function 
symbols, and an infinite set C of constants, how 
a ground term built on them is enumerated?

Answer: Using weighted strings.

• Suppose C = {a1, a2, …, ai, …}, w(ai) = i. 

• For each symbol f in F, w(f) = 1.

• For any given ground term t built on F and C, w(t) = 
the sum of all weights of symbols in t.

• To enumerate t, we enumerate all terms of weight 
w(t).

• It’s guaranteed that every ground term will be 
enumerated. 

Herbrand Models

• First-order language L = (P, F, X, Op)

• The models of L is I = (D, R, G)

• The models of FOL can be very complicated since 
we have infinite many choices for choosing a 
domain, a relation for a predicate symbol, a 
function for a function symbol. 

• We will show that, if a set of clauses has a model 
(i.e. it is satisfiable), it has a particular canonical 
(or, generic) model, which is called Herbrand
model.
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Herbrand Universe

• First-order language L = (P, F, X, Op)

• The models of L is I = (D, R, G)

• S: set of clauses of L

• Herbrand Universe of S: HS = T(F), the set of ground 
terms built on F, assuming F contains some constant 
symbols (otherwise, we add a constant c into F).

• Example: F = { c/0, s/1 }

– HS = T(F) = { c, s(c ), s(s(c)), …, si(c ), … }

• The set is HS not empty and is infinite if contains a 
non-constant function symbol. 

Herbrand Base
• First-order language L = (P, F, X, Op)

• The models of L is I = (D, R, G)

• S: set of clauses of L

• Herbrand Universe of S: HS

• Herbrand Base of S: BS is the set of all ground atomic 
formulas.

• Example: F= {a, b, f}, P = { p }, and 

S = {(¬p(a, f(x))), (p(b, f(y)))}

HS = { a, b, f(a), f(b), f(f(a)), f(f(b)), f(f(f(a))), … }

BS = { p(a, a), p(a, b), p(b, a), p(b, b), p(a, f(a)), p(a, 
f(b)), p(b, f(a)), p(b, f(b)), p(f(a), a), p(f(b), a), … }
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Herbrand Models
• First-order language L = (P, F, X, Op)

• The models of L is I = (D, R, G)

• S: set of clauses of L

• Herbrand Universe of S: HS

• Herbrand Base of S: BS is the set of all ground atomic 
formulas.

• Herbrand Model of S: MS is merely a subset of BS, 
with the assumption that  D = HS = T(F), G = F, and 
R = P defined by MS.

Herbrand Models
• Herbrand Model of S: MS is merely a subset of BS, 

with the assumption that  D = HS = T(F), G = F, and 
R is defined by MS.

• The domain of the Herbrand model is the Herbrand
universe HS.

• G = F: For any f in F, f(t1, t2, …, tk) is the result of 
applying f to (t1, t2, …, tk) in Tk(F).

• R is defined by MS: For any p in P, p(t1, t2, …, tk) is 
true iff p(t1, t2, …, tk) is in MS.
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Herbrand Models
• Herbrand Model of S: MS is merely a subset of BS, 

with the assumption that  D = HS = T(F), G = F, and R
is defined by MS.

• Example: F= {a, b, f}, P = { p }, and 

S = {(¬p(a, f(x))), (p(b, f(y)))}

HS = { a, b, f(a), f(b), f(f(a)), f(f(b)), f(f(f(a))), … }

BS = { p(a, a), p(a, b), p(b, a), p(b, b), p(a, f(a)), p(a, 
f(b)), p(b, f(a)), p(b, f(b)), p(f(a), a), p(f(b), a), … }

• MS1 = { p(b, f(t)) | t  HS } – the minimal H-model

• MS2 = BS – { p(a, f(t)) | t  HS } – the maximal model.

• Any set M,  where MS1  M  MS2, is a H-model.

Herbrand Theorem

• Theorem: Let S be a set of clauses. S has a model 
if and only if it has a Herbrand model.
– The proof is given in the book.

• Herbrand’s Theorem: A set of clauses S is 
unsatisfiable if and only if a finite set of ground 
instances of clauses from S is unsatisfiable.
– The proof is omitted in the book.

• Example:  C ={ (¬p(x) | q(x)),  (p(y)) , (¬q(z))}

• One set of ground instances for this set of clauses is:

S = { (¬p(a) | q(a)),  (p(a)),  (¬q(a)) }

Unit resolution can show S is unsatisfiable.
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Ground Resolution Rule
• Ground Resolution: (p(t) | A), (-p(t) | C) |- (A | C)

• (p(t) | A), (- p(t) |C) are the parents of (A | C); 

• (A | C) is their resolvent on the clashing literal p(t)

• Notation: Res((p(t) | A), (-p(t) | C)) = (A | C)

• Example: S = { (¬p(a) | q(a)),  (p(a)),  (¬q(a)) }

• Res((¬p(a) | q(a)),  (p(a))) = (q(a) | q(a))

• Res((q(a)),  (¬q(a))) = ( ), the empty clause.

• Theorem: (p(t) | A), (-p(t) | C) |= (A | C)

Different Forms of Resolution

• Binary Resolution

• Unit Resolution (when C1 or C2 is empty)

• Clashing (when both C1 and C2 are empty)

• As a refutation prover, ( ) is the goal.

(C1 | A )

(C1 | C2 )

(C2 | -A )

( p A 
) C2

C2 | - A ) (C1 | A )

C1

( - A )

(A )

( )

( - A ) ( ) is the empty clause, 
also denoted by  or 0.
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Semi-Decision for FOL
• To decide if a FOL formula A is valid:

1. Negate the formula: B =  A.

2. Transform B into a clausal form: C = CNF(B).

3. Generate a finite set of ground instances of C: S = 
finiteInstances(C)

4. Check if S is unsatisfiable by resolution.

• Step 3 is highly problematic: there are infinitely many

ground terms (if there is at least one function symbol) so it is

be difficult to find a correct subset of ground instances. 

• It is a semi-decision procedure because if the set of clauses 
is satisfiable, it may have an infinite model.

• The validity problem in FOL is undecidable.

Colonel West is a criminal

1. It is a crime for an American to sell weapons to a 
hostile country.

2. The country Nono has some missiles.

3. All of its missiles were sold to it by Colonel West.

4. Nono is an enemy of USA.

5. Colonel West is an American. 
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Modeling with Horn Clauses: 
at most one positive literal

1. It is a crime for an American to sell weapons to a 
hostile country.

American(x)  Weapons(y)  Hostile(z) 
Sell(x,y,z)  Criminal (x)

2. The country Nono has some missiles.

//  x Owns(Nono, x)  Missile(x)

Missile(M1)   // M1 is a Skolem Constant

Owns(Nono, M1)

(A1 | A2 | A3 | A4 | B)  as A1 A2 A3 A4  B

Modeling with Horn Clauses: 
at most one positive literal

3. All of its missiles were sold to it by Colonel West.

Missile(x)  Owns(Nono, x)  Sells(West,x, Nono).

4. Nono is an enemy of USA.

Enemy(Nono,Amer ican).

5. Colonel West is an American. 

American(West).

// common sense

Missile(x)  Weapon(x)

Enemy(x, America)  Hostile(x) 
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