## **First-Order Logic**

Part two
Logic in Computer Science

1

## **Prenex Normal Form**

- A formula containing no quantifiers at all, or
- A formula of the form

$$Q_1x_1\ Q_2x_2\ ...\ Q_nx_n\ P$$

where  $Q_i$  are either the universal or existential quantifier,  $x_i$  are variables and P is free of quantifiers.

$$e.g.$$
,  $\exists x \ \forall y \ (p(x) \rightarrow q(y)).$ 

#### **Conversion to Prenex Normal Form**

- 1. Replace implications, biconditionals, etc., by and-or-negation. E.g.,  $(A \rightarrow B)$  by  $(\neg A \lor B)$
- 2. Move "inwards" until there are no quantifiers in the scope of a negation, by deMorgan's laws.
- 3. Rename variables so each variable following a quantifier has a unique name.
- 4. Move quantifiers to the front of the sentence, without changing their order.
- Prenex normal forms are not unique

3

## **Example of Prenex NF**

```
\begin{split} &\forall x \ ((C(x) \land \exists y \ (T(y) \land L(x,y))) \rightarrow \exists y \ (D(y) \land B(x,y))) \\ &\forall x \ (\neg(C(x) \land \exists y \ (T(y) \land L(x,y))) \lor \ \exists z \ (D(z) \land B(x,z))) \\ &\forall x \ (\neg \ \exists y \ (C(x) \land T(y) \land L(x,y)) \lor \ \exists z \ (D(z) \land B(x,z))) \\ &\forall x \forall y \ (\neg(C(x) \land T(y) \land L(x,y)) \lor \ \exists z \ (D(z) \land B(x,z))) \\ &\forall x \forall y \exists z \ (\neg(C(x) \land T(y) \land L(x,y)) \lor (D(z) \land B(x,z))) \end{split}
```

If you want to restore the implication:

$$\forall x \forall y \exists z \ (C(x) \land T(y) \land L(x,y)) \rightarrow (D(z) \land B(x,z))$$

Another prenex normal form is:

$$\forall x \exists z \forall y \ (C(x) \land T(y) \land L(x, y)) \rightarrow (D(z) \land B(x, z))$$

### **Skolemization: Removal of Quantifiers**

- 1. Obtain a Prenex NF B =  $Q_1x_1 Q_2x_2 ... Q_nx_n P$
- 2. For j := 1 to n do
- 3. If  $(Q_i \text{ is } \forall)$  remove  $Q_i x_i$  from B
- 4. If  $(Q_j \text{ is } \forall \exists)$  remove  $Q_j x_j$  and replace  $x_j$  by f(V), where V is the set of free variables in B

**Example**:  $A = \forall x \exists z \forall y \ (C(x) \land T(y) \land L(x,y)) \rightarrow (D(z) \land B(x,z))$ B := A

- 1.  $B := \exists z \forall y (C(x) \land T(y) \land L(x, y)) \rightarrow (D(z) \land B(x, z))$
- 2.  $B := \forall y (C(x) \land T(y) \land L(x, y)) \rightarrow (D(f(x)) \land B(x, f(x)))$
- 3.  $B := (C(x) \land T(y) \land L(x, y)) \rightarrow (D(f(x)) \land B(x, f(x)))$
- **Theorem**:  $A \approx B$ , i.e., A and B are equally satisfiable.

5

## **CNF: Conjunction Normal Forms**

- 1. Obtain a PNF of A:  $B = Q_1 x_1 Q_2 x_2 ... Q_n x_n P$
- 2. Remove quantifiers by Skolemization
- 3. Convert the formula into CNF as in PL

#### **Example:**

- A = $\forall x \exists z \forall y (C(x) \land T(y) \land L(x, y)) \rightarrow (D(z) \land B(x, z))$
- B =  $(C(x) \land T(y) \land L(x, y)) \rightarrow (D(f(x)) \land B(x, f(x)))$
- $C = \{ (-C(x) \mid -T(y) \mid -L(x, y) \mid D(f(x)),$  $(-C(x) \mid -T(y) \mid -L(x, y) \mid B(x, f(x)) \}$
- **Theorem**:  $A \approx C$ , i.e., A and C are equally satisfiable.

#### **CNF: No Need to go through PNF**

- 1. Obtain a NNF of A: B = NNF(A)
- 2. Remove quantifiers by Skolemization
- 3. Convert the formula into CNF as in PL

#### **Example:**

- $A = \neg \forall x \exists z \forall y (C(x) \land T(y) \land L(x, y)) \rightarrow (D(z) \land B(x, z))$
- B =  $\exists x \forall z \exists y (C(x) \land T(y) \land L(x, y)) \land (\neg D(z) \lor \neg B(x, z))$
- $C = (C(c) \land T(f(z)) \land L(c, f(z))) \land (\neg D(z) \lor \neg B(c, z))$
- C is already a CNF.
- **Theorem**:  $A \approx C$ , i.e., A and C are equally satisfiable.

7

## **Definition of ≈**

- We write A ≈ B to denote that A is satisfiable iff B is satisfiable.
- $A \equiv B$  implies  $A \approx B$ , but the inverse is not true.

**Example**: Consider  $A = \exists y \ p(x, y) \ and \ B = p(x, f(y))$ .

For the interpretation  $I = (Z, \{>\}, \{f\})$ , where Z is the set of all integers and f(x) = x+1, A is true in I, but B is false in I. So it's not true that  $A \equiv B$ .

(only-if part) Suppose A is true in  $I = (D, \{p\}, \{\})$ . We extend I to I' by introducing a function  $f: D \to D$  such that  $f(d_1) = d_2$  if  $p(d_1, d_2)$  is true in  $I' = (D, \{p\}, \{f\})$ .

(if-part) If  $I'' = (D, \{p\}, \{f\})$  is a model of B, then it is easy to see that A is also true in I''.

So it is true that  $A \approx B$ .

## Converting formulas to CNF

- 1. Obtain NNF (negation normal form) A
  - a. Get rid of  $\leftrightarrow$  or  $\oplus$
  - b. Get rid of  $\rightarrow$
  - c. Push ¬ downward
- 2. Remove quantifiers by Skolemization to get B
  - a. Rename quantified variables
  - b. Replace existentially quantified variables by Skolem constants/functions.
  - c. Discard all universal quantifiers
- 3. Convert B into clause set C
  - a. Convert B into CNF
  - b. Convert CNF into clause set
  - c. Standardize the variables in clauses

9

## **Converting formulas to CNF**

1a. Eliminate all  $\leftrightarrow$  connectives

$$(P \leftrightarrow Q) \Rightarrow ((P \rightarrow Q) \land (Q \rightarrow P))$$

1b. Eliminate all  $\rightarrow$  connectives

$$(P \rightarrow Q) \Rightarrow (\neg P \lor Q)$$

1c. Reduce the scope of each negation symbol to a single predicate

$$\neg\neg P \Rightarrow P$$

$$\neg (P \lor Q) \Rightarrow \neg P \land \neg Q$$

$$\neg (P \land Q) \Rightarrow \neg P \lor \neg Q$$

$$\neg \forall x P \Rightarrow \exists x \neg P$$

$$\neg \exists x P \Rightarrow \forall x \neg P$$

## Converting formulas to clausal form Skolem constants and functions

- 2a. Standardize variables: rename all variables so that each quantifier has its own unique variable name
- 2b. Replace existential quantified variables by introducing Skolem constants or functions

```
\exists x \ P(x) \text{ is changing to } P(C)
```

C is a Skolem constant (a brand-new constant symbol that is not used in any other sentence)

```
\forall x \exists y P(x,y) is changing to P(x, f(x))
```

since  $\exists$  is within scope of a universally quantified variable, use a **Skolem function f** to construct a new value that **depends on** the universally quantified variable.

f must be a brand-new function name not occurring anywhere

11

#### Converting formulas to clausal form

- 2c. Remove universal quantifiers by (1) moving them all to the left end; (2) making the scope of each the entire sentence; and (3) dropping the "prefix" part Example:  $\forall x \ P(x)$  is changing to P(x)
- 3a. Put into conjunctive normal form (conjunction of disjunctions) using distributive and associative laws

$$(P \land Q) \lor R \Rightarrow (P \lor R) \land (Q \lor R)$$
$$(P \lor Q) \lor R \Rightarrow (P \lor Q \lor R)$$

- 3b. Split conjuncts into separate clauses
- 3c. Standardize variables so each clause contains only variable names that do not occur in any other clause

## An example

$$\forall x \ (P(x) \to ((\forall y)(P(y) \to P(f(x,y))) \land \neg(\forall y)(Q(x,y) \to P(y))))$$

- 1a. Eliminate  $\leftrightarrow$
- 1b. Eliminate  $\rightarrow$

$$\forall x \left( \neg P(x) \lor \left( \forall y \left( \neg P(y) \lor P(f(x,y)) \right) \land \neg \forall y \left( \neg Q(x,y) \lor P(y) \right) \right) \right)$$

1c Reduce scope of negation

$$\forall x \ (\neg P(x) \lor (\forall y \ (\neg P(y) \lor P(f(x,y))) \land \exists y \ (Q(x,y) \land \neg P(y))))$$

2a. Standardize variables

$$\forall x \left( \neg P(x) \lor \left( \forall y \left( \neg P(y) \lor P(f(x,y)) \right) \land \exists z \left( Q(x,z) \land \neg P(z) \right) \right) \right)$$

2b. Eliminate existential quantification

$$\forall x \ (\neg P(x) \lor (\forall y \ (\neg P(y) \lor P(f(x,y))) \land (Q(x,g(x)) \land \neg P(g(x)))))$$

2c. Drop universal quantification symbols

$$(\neg P(x) \lor ((\neg P(y) \lor P(f(x,y))) \land (Q(x,g(x)) \land \neg P(g(x)))))$$

13

## An Example (continued)

3a. Convert to conjunction of disjunctions

$$(\neg P(x) \mid \neg P(y) \mid P(f(x,y))) \land (\neg P(x) \mid Q(x,g(x))) \land (\neg P(x) \mid \neg P(g(x)))$$

3b. Create separate clauses

$$(\neg P(x) \mid \neg P(y) \mid P(f(x,y)))$$

$$(\neg P(x) \mid Q(x, g(x)))$$

$$(\neg P(x) \mid \neg P(g(x)))$$

3c. Standardize variables

$$(\neg P(x) \mid \neg P(y) \mid P(f(x,y)))$$

 $(\neg P(z) \mid Q(z, g(z)))$ 

$$(\neg P(w) \mid \neg P(g(w)))$$

**Question**: Given a finite set *F* of function symbols, and an infinite set *C* of constants, how a ground term built on them is enumerated?

Answer: Using weighted strings.

- Suppose  $C = \{a_1, a_2, ..., a_i, ...\}, w(a_i) = i.$
- For each symbol f in F, w(f) = 1.
- For any given ground term t built on F and C, w(t) = the sum of all weights of symbols in t.
- To enumerate t, we enumerate all terms of weight ≤ w(t).
- It's guaranteed that every ground term will be enumerated.

15

## **Herbrand Models**

- First-order language L = (P, F, X, Op)
- The models of L is I = (D, R, G)
- The models of FOL can be very complicated since we have infinite many choices for choosing a domain, a relation for a predicate symbol, a function for a function symbol.
- We will show that, if a set of clauses has a model (i.e. it is satisfiable), it has a particular canonical (or, generic) model, which is called Herbrand model.

#### **Herbrand Universe**

- First-order language L = (P, F, X, Op)
- The models of L is I = (D, R, G)
- S: set of clauses of L
- Herbrand Universe of S:  $H_S = T(F)$ , the set of ground terms built on F, assuming F contains some constant symbols (otherwise, we add a constant c into F).
- Example:  $F = \{ c/0, s/1 \}$  $-H_S = T(F) = \{ c, s(c), s(s(c)), ..., s^i(c), ... \}$
- The set is H<sub>S</sub> not empty and is infinite if contains a non-constant function symbol.

20

## **Herbrand Base**

- First-order language L = (P, F, X, Op)
- The models of L is I = (D, R, G)
- S: set of clauses of L
- Herbrand Universe of S: H<sub>S</sub>
- Herbrand Base of S: B<sub>S</sub> is the set of all ground atomic formulas.
- Example:  $F = \{a, b, f\}, P = \{p\}, \text{ and }$  $S = \{(\neg p(a, f(x))), (p(b, f(y)))\}$   $H_S = \{a, b, f(a), f(b), f(f(a)), f(f(b)), f(f(f(a))), \dots\}$   $B_S = \{p(a, a), p(a, b), p(b, a), p(b, b), p(a, f(a)), p(a, f(b)), p(b, f(a)), p(b, f(b)), p(f(a), a), p(f(b), a), \dots\}$

#### **Herbrand Models**

- First-order language L = (P, F, X, Op)
- The models of L is I = (D, R, G)
- S: set of clauses of L
- Herbrand Universe of S: H<sub>S</sub>
- Herbrand Base of S: B<sub>S</sub> is the set of all ground atomic formulas.
- Herbrand Model of S:  $M_S$  is merely a subset of  $B_S$ , with the assumption that  $D = H_S = T(F)$ , G = F, and R = P defined by  $M_S$ .

22

### **Herbrand Models**

- Herbrand Model of S:  $M_S$  is merely a subset of  $B_S$ , with the assumption that  $D = H_S = T(F)$ , G = F, and R is defined by  $M_S$ .
- The domain of the Herbrand model is the Herbrand universe H<sub>S</sub>.
- G = F: For any f in F,  $f(t_1, t_2, ..., t_k)$  is the result of applying f to  $(t_1, t_2, ..., t_k)$  in  $T^k(F)$ .
- R is defined by  $M_S$ : For any p in P,  $p(t_1, t_2, ..., t_k)$  is true iff  $p(t_1, t_2, ..., t_k)$  is in  $M_S$ .

#### **Herbrand Models**

- Herbrand Model of S:  $M_S$  is merely a subset of  $B_S$ , with the assumption that  $D = H_S = T(F)$ , G = F, and R is defined by  $M_S$ .
- Example:  $F = \{a, b, f\}, P = \{p\}, and$   $S = \{(\neg p(a, f(x))), (p(b, f(y)))\}$   $H_S = \{a, b, f(a), f(b), f(f(a)), f(f(b)), f(f(f(a))), \dots\}$   $B_S = \{p(a, a), p(a, b), p(b, a), p(b, b), p(a, f(a)), p(a, f(b)), p(b, f(a)), p(b, f(b)), p(f(a), a), p(f(b), a), \dots\}$
- $M_{S1} = \{ p(b, f(t)) | t \in H_S \}$  the minimal H-model
- $M_{S2} = B_S \{ p(a, f(t)) | t \in H_S \}$  the maximal model.
- Any set M, where  $M_{S1} \subseteq M \subseteq M_{S2}$ , is a H-model.

24

## **Herbrand Theorem**

- **Theorem:** Let S be a set of clauses. S has a model if and only if it has a Herbrand model.
  - The proof is given in the book.
- Herbrand's Theorem: A set of clauses S is unsatisfiable if and only if a finite set of ground instances of clauses from S is unsatisfiable.
  - The proof is omitted in the book.
- **Example**:  $C = \{ (\neg p(x) | q(x)), (p(y)), (\neg q(z)) \}$
- One set of ground instances for this set of clauses is:

$$S = \{ (\neg p(a) \mid q(a)), (p(a)), (\neg q(a)) \}$$

Unit resolution can show S is unsatisfiable.

### **Ground Resolution Rule**

- Ground Resolution:  $(p(t) \mid A)$ ,  $(-p(t) \mid C) \mid (A \mid C)$
- (p(t) | A), (-p(t) | C) are the parents of (A | C);
- $(A \mid C)$  is their *resolvent* on the clashing literal p(t)
- Notation: Res((p(t) | A), (-p(t) | C)) = (A | C)
- **Example**:  $S = \{ (\neg p(a) | q(a)), (p(a)), (\neg q(a)) \}$
- $Res((\neg p(a) | q(a)), (p(a))) = (q(a) | q(a))$
- Res $((q(a)), (\neg q(a))) = ()$ , the empty clause.
- **Theorem:**  $(p(t) | A), (-p(t) | C) \models (A | C)$

26

## **Different Forms of Resolution**

• Binary Resolution

$$\frac{(C_1 \mid A) \qquad (C_2 \mid -A)}{(C_1 \mid C_2)}$$

• Unit Resolution (when C<sub>1</sub> or C<sub>2</sub> is empty)

$$\frac{(pA \quad C_2 \mid -A)}{C_2} \quad \frac{(C_1 \mid A) \quad (-A)}{C_1}$$

• Clashing (when both C<sub>1</sub> and C<sub>2</sub> are empty)

(A) 
$$(-A)$$
 () is the empty clause, also denoted by  $\square$  or  $0$ .

• As a refutation prover, () is the goal.

#### **Semi-Decision for FOL**

- To decide if a FOL formula A is valid:
  - 1. Negate the formula:  $B = \neg A$ .
  - 2. Transform B into a clausal form: C = CNF(B).
  - 3. Generate a finite set of ground instances of C: S = finiteInstances(C)
  - 4. Check if S is unsatisfiable by resolution.
- Step 3 is highly problematic: there are infinitely many ground terms (if there is at least one function symbol) so it is be difficult to find a correct subset of ground instances.
- It is a semi-decision procedure because if the set of clauses is satisfiable, it may have an infinite model.
- The validity problem in FOL is undecidable.

28

## **Colonel West is a criminal**

- 1. It is a crime for an American to sell weapons to a hostile country.
- 2. The country Nono has some missiles.
- 3. All of its missiles were sold to it by Colonel West.
- 4. Nono is an enemy of USA.
- 5. Colonel West is an American.

## Modeling with Horn Clauses: at most one positive literal

$$(\neg A_1 \,|\, \neg A_2 \,|\, \neg A_3 \,|\, \neg A_4 \,|\, B) \ as \ A_1 \wedge A_2 \wedge A_3 \wedge A_4 \to B$$

1. It is a crime for an American to sell weapons to a hostile country.

```
American(x) \land Weapons(y) \land Hostile(z) \land Sell(x,y,z) \rightarrow Criminal (x)
```

2. The country Nono has some missiles.

```
//∃ x Owns(Nono, x) ∧ Missile(x)
Missile(M1) // M1 is a Skolem Constant
Owns(Nono, M1)
```

30

# Modeling with Horn Clauses: at most one positive literal

- 3. All of its missiles were sold to it by Colonel West. Missile(x)  $\land$  Owns(Nono, x)  $\rightarrow$  Sells(West,x, Nono).
- 4. Nono is an enemy of USA. Enemy(Nono,Amer ican).
- 5. Colonel West is an American.

American(West).

// common sense

 $Missile(x) \rightarrow Weapon(x)$ 

Enemy(x, America)  $\rightarrow$  Hostile(x)