First-Order Logic

Logic in Computer Science

1

Pros and Cons of Propositional Logic

- © It is declarative
 - solutions are specified by constraints, not by a procedure
- © It allows partial/disjunctive/negated information
 - (unlike most data structures and databases)
- ① It is compositional:
 - meaning of $p \wedge q$ is derived from meanings of p and q
- Meaning in propositional logic is contextindependent
 - (unlike natural language, where meaning depends on context)
- ☼ It has very limited expressive power
 - (unlike natural language)
 - E.g., cannot say "everybody has a mother"

Problems with propositional logic

- No notion of objects
- No notion of relations among objects
- In Propositional Logic, we define A1 as "American sits at seat 1." The meaning of A1 is instructive to us, suggesting
 - -there is an object we call American,
 - -there is an object we call "seat 1",
 - -there is a relationship "sit" between these two objects
- Formally, none of these are in Propositional Logic.

3

First-Order Logic

- First-order logic (FOL) models the world in terms of
 - Objects, which are things with individual identities
 - Properties of objects that distinguish them from other objects
 - Relations that hold among sets of objects
 - Functions, which map individuals in the domain to another in the domain.
- Examples:
 - Objects: Students, lectures, companies, cars ...
 - Properties: blue, oval, even, large, ...
 - Relations: Brother-of, bigger-than, outside, part-of, has-color, occurs-after, owns, visits, precedes, ...
 - Functions: father-of, best-friend, second-half, one-more-than

• • •

A BNF for FOL

5

Precedence of Logical Operators

• As in arithmetic, an ordering is imposed on the use of logical operators in compound propositions

```
\forall x \ p(x) \rightarrow q(x) \lor r(x) \text{ instead of } \forall x \ (p(x) \rightarrow (q(x) \lor r(x)))
```

- To avoid unnecessary parenthesis, the following precedence order holds:
 - 1. Negation (\neg)
 - 2. Conjunction (\wedge)
 - 3. Disjunction (\vee)
 - 4. Implication (\rightarrow)
 - 5. Logical equal (\leftrightarrow) , exclusive or (\oplus)
 - 6. Quantifiers (\forall, \exists)

Application related components

- Constant symbols, which represent objects in the world
 - Mary
 - green
- Function symbols, which map individuals to individuals
 - father(Mary) = John
 - $-\operatorname{color}(\operatorname{Sky}) = \operatorname{blue}$
- Predicate symbols, which map individuals to truth values
 - ->(5,3)
 - isGreen(Grass)
 - isColor(Grass, Green)

First-order language L = (P, F, X, Op)

7

Common Parts in FOL

First-order language L = (P, F, X, Op)

- Variable symbols
 - -E.g., x, y, x1, ...
- Logical Operators
 - Same as in PL: not (¬), and (∧), or (\lor), implies (→), logic equal (biconditional \leftrightarrow)
- Quantifiers
 - -Universal ∀x
 - -Existential $\exists x$

Formulas are built from terms and atoms

- A **term** (denoting a real-world individual) is either a constant symbol, a variable symbol, or an n-place function of n terms.
 - x and $f(t_1, ..., t_n)$ are terms, where each t_i is a term.

A term with no variables is a ground term

- An atom (which has value true or false) is either
 an n-place predicate of n terms, or a propositional variable
- A **formula** is either a Boolean constant, an atom, or an expression built from operators and quantifiers.
 - If P, Q are formulas, then $\forall x P$ and $\exists x P$ are formulas
 - $\neg P$, $P \lor Q$, $P \land Q$, $P \rightarrow Q$, $P \leftrightarrow Q$ are formulas but not atoms

9

Quantifiers

Universal quantification

- $-\forall x P(x)$ means that P holds for **all** values of x in the domain associated with that variable
 - E.g., $\forall x \text{ dolphin}(x) \rightarrow \text{mammal}(x)$

• Existential quantification

- -means that P holds for **some** value of x in the domain associated with that variable
 - E.g., $\exists x \text{ manmal}(x) \land \text{lays-eggs}(x)$
- Permits one to make a statement about some object without naming it

Some Definitions

- The **scope** of x in $\forall x P(x)$ or $\exists x P(x)$ will be the whole formula P(x).
 - E.g., the scope of x in $(\forall x p(x) \lor q(x)) \land r(x)$ is $p(x) \lor q(x)$
- If x appears in the scope of $\forall x$ or $\exists x$, then x is bound; otherwise x is free.
- A **formula** is closed if it has no free variables; otherwise it's open.
 - $\forall x \ p(x, y)$ is open because x is bound but y is free.
- A **formula** is ground if it has no variables, free or bound.
 - p(a, f(b)) is ground, but p(x, a) is not ground.

11

Universal Quantifiers

- Universal quantifiers are often used with "implies" to form "conditional rules":
 - $\forall x \ student(x) \rightarrow smart(x)$
 - It means "All students are smart"
- Universal quantification is *rarely* used to make blanket statements about every individual in the world:
 - $\forall x \text{ student}(x) \land \text{smart}(x)$
 - It means "Everyone in the world is a student and is smart"

Existential Quantifiers

- Existential quantifiers are usually used with "and" to specify a list of properties about an individual:
 - $\exists x \ student(x) \land smart(x)$
 - It means "There is a student who is smart"
- A common mistake is to represent this English sentence as the FOL sentence:
 - $\exists x \ student(x) \rightarrow smart(x)$
 - But what happens when there is a person who is *not* a student?

13

Translating English to FOL

- All zombies eat brains.
 - − **This assumption can be re**presented in propositional logic by the propositional variable *p*.
 - In first order logic, the expression can be broken down
 - $\forall x \ zombie(x) \rightarrow eatsbrains(x)$
 - $\forall x \ zombie(x) \rightarrow eats(x, brains)$
 - $\forall x \; \exists y \; zombie(x) \rightarrow eats(x, y) \land brains(y)$
- Some people with no heartbeats are zombies.
 - $-\exists x \text{ person}(x) \land \text{ zombie}(x) \land \neg \text{ heartbeat}(x)$

Translating English to FOL

You can fool some of the people all of the time.

 $\exists x \forall t \text{ person}(x) \land time(t) \rightarrow foolAt(x, t)$

You can fool all of the people some of the time.

 $\forall x \exists t \text{ person}(x) \land time(t) \rightarrow foolAt(x, t)$

You cannot fool all of the people all of the time.

 $\neg \forall x \ \forall t \ person(x) \land time(t) \rightarrow foolAt(x, t)$

All purple mushrooms are poisonous.

 $\forall x \text{ mushroom}(x) \land \text{purple}(x) \rightarrow \text{poisonous}(x)$

No purple mushroom is poisonous.

 $\neg \exists x \ purple(x) \land mushroom(x) \land poisonous(x)$

 $\forall x \text{ mushroom}(x) \land \text{purple}(x) \rightarrow \neg \text{ poisonous}(x)$

15

Translating English to FOL

There are exactly two purple mushrooms.

 $\exists x \exists y \; mushroom(x) \land purple(x) \land mushroom(y) \land purple(y) \land \neg(x=y) \land \forall z \; mushroom(z) \land purple(z) \rightarrow ((x=z) \lor (y=z))$

Clinton is not tall.

¬ tall(Clinton)

X is above Y if X is directly on top of Y or there is another object Z directly on top of Y and X is above Z.

 $\forall x \forall y \text{ above}(x, y) \leftrightarrow (\text{on}(x, y) \lor \exists z \text{ on}(z, y) \land \text{above}(x, z))$

Formalizing English Sentences

. Some rules that usually work for English sentences are:

- $\forall x$ quantifies a conditional.
- $\exists x$ quantifies a conjunction.
- Use $\forall x$ with conditional for "all," "every," and "only."
- Use $\exists x$ with conjunction for "some," "there is," and "not all."
- Use $\forall x$ with conditional or $\neg \exists x$ with conjunction for "no A is B."
- Use $\exists x$ with conjunction or $\neg \forall x$ with conditional for "not all A's are B."

18

Semantics of FOL

- Define an interpretation I in which a formula is true or false
- Interpretation I includes
 - **Domain D:** the set of all objects in the world (of interest)
 - Assign each constant to an object in **D**
 - Assign each function of n arguments to a function $D^n \Rightarrow D$
 - Assign each predicate of n arguments to a relation $\mathbf{D}^n \Rightarrow \{1, 0\}$
 - Therefore, every ground formula will have a truth value
 - In general there is an infinite number of interpretations because D may be infinite
- **Define logical operators** as in Propositional Logic
- Define semantics of $\forall x$ and $\exists x$
 - $\forall x P(x)$ is true iff P(x) is true under all substitutions for x in **D**.
 - $-\exists x P(x)$ is true iff P(x) is true under some substitutions for x in **D**.

Truth in first-order logic

First-order language L = (P, F, X, Op)

Formulas are true with respect to an interpretation

$$I = (D, R, G)$$

- I defines D as the set of objects (domain of elements)
- I assigns relations *R* to predicate symbols *P*:

$$p \in P$$
 iff $p^{I} \in R$

• I assigns functions G over D to function symbols (including constant symbols) F:

$$f \in F$$
 iff $f^{I} \in G$

20

Truth in first-order logic

$$L = (P, F, X, Op)$$
$$I = (D, R, G)$$

- Example: Interpretations of $\forall x \ p(x, f(x))$
- Interpretation I₁:

$$D^{I_1}$$
 = people, p^{I_1} =love, f^{I_1} = child_of
 $\forall x \ p(x, f(x))$ = "everybody loves his/her child"

• Interpretation I₂:

$$D^{I_2} = integers$$
, $p^{I_2} = less$, $f^{I_2} = successor$
 $\forall x \ p(x, f(x)) = "every integer is less than its successor"$

• Interpretation I₃:

```
D^{I_3} = sets, p^{I_3} = disjoint, f^{I_3} = complement
\forall x \ p(x, f(x)) = "any set is disjoint from its complement"
```

Truth in first-order logic

```
L = (P, F, X, Op)I = (D, R, G)
```

- substitution: $\theta: X \to D$ a function which assigns an object to a variable.
- **proc** $eval(A, I, \theta)$ // evaluate A to an object or a truth value if A = 0 or A = 1 return A; // A is a Boolean constant if $A \in X$ return $\theta(A)$; // A is a free variable, return an object if $A = f(t_1, t_2, ..., t_k)$ return $f^I(a_1, a_2, ..., a_k)$, where $a_i = eval(t_i, I, \theta)$; if $A = p(t_1, t_2, ..., t_k)$ return $p^I(a_1, a_2, ..., a_k)$, where $a_i = eval(t_i, I, \theta)$; if $A = \neg B$ return $\neg eval(B, I, \theta)$; // the top symbol of A is " \neg " if $A = (B \ op \ C)$ return $eval(B, I, \theta)$ op $eval(C, I, \theta)$, // the top symbol of A is "op", i.e., \land , \lor , \rightarrow , \leftrightarrow if $A = (\forall x \ B)$ return $allInD(B, I, \theta, x, D^I)$; // top sym. of A is " \forall "

if $A = (\exists x \ B)$ return $someInD(B, I, \theta, x, D^I)$; // top sym. of A is " \exists "

22

Truth in first-order logic

$$L = (P, F, X, Op)$$
$$I = (D, R, G)$$

• substitution: $\theta: X \to D$ a function which assigns an object to a variable.

```
proc allInD(B, I, \theta, x, S); // = eval(\forall x B, I, \theta), S = D^I

if S = \emptyset return 1;

pick d \in S;

if eval(B, I, \theta \cup \{x=d\}) = 0 return 0;

return allInD(B, I, \theta, x, S - \{d\});
```

 $eval(\forall x \ B, \ I, \ \theta) = \bigwedge_{d \in D^I} eval(B, \ I, \ \theta \cup \{x = d\})$

Truth in first-order logic

$$L = (P, F, X, Op)$$
$$I = (D, R, G)$$

• substitution: $\theta: X \to D$ a function which assigns an object to a variable.

proc someInD(B, I, θ , x, S) // = eval($\exists x \ B$, I, θ), $S = D^I$ if $S = \emptyset$ return 0; pick $d \in S$; if $eval(B, I, \theta \cup \{x=d\}) = 1$ return 1; return $someInD(B, I, \theta, x, S - \{d\})$;

 $eval(\exists xB, I, \theta) = \bigvee_{d \in D^I} eval(B, I, \theta \cup \{x=d\})$

24

Truth in first-order logic

$$L = (P, F, X, Op)$$
$$I = (D, R, G)$$

• substitution: $\theta: X \to D$ a function which assigns an object to a variable.

$$\begin{cases} eval(\exists xB, I, \theta) = \bigvee_{d \in D^I} eval(B, I, \theta \cup \{x=d\}) \end{cases}$$

- Example: L = $(\{p\}, \{a\}, \{x\}, Op)$ I = $(D, \{r\}, \{a\})$, where $D = \{a, b, c\}, r = \{(a, b), (b, c), (c, a)\}$
- $\operatorname{eval}(\exists x \ p(a, x), I, \varnothing) = \bigvee_{d \in D} \operatorname{eval}(B, I, \varnothing \cup \{x = d\}) = \operatorname{eval}(p(a, x), I, \{x = a\}) \vee \operatorname{eval}(p(a, x), I, \{x = b\}) \vee \operatorname{eval}(p(a, x), I, \{x = c\}) = r(a, \operatorname{eval}(x, I, \{x = a\})) \vee r(a, \operatorname{eval}(x, I, \{x = b\})) \vee r(a, \operatorname{eval}(x, I, \{x = c\}) = r(a, a) \vee r(a, b) \vee r(a, c) = 0 \vee 1 \vee 0 = 1$

More Definitions

$$L = (P, F, X, Op)$$
$$I = (D, R, G)$$

- **Definitions**: Let A be a closed formula.
- An interpretation I is a model of A if $eval(A, I, \emptyset) = 1$.
- If A has model, A is said to be satisfiable.
- For any formula A, M(A) is the set of all models of A, i.e., all interpretations that satisfy A.
- A is valid if M(A) contains every interpretation, denoted by |= A.
- A is unsatisfiable if M(A) is empty.
- Given formula B, A entails B if $M(A) \subseteq M(B)$, denoted by A \models B. We say "B is a logical consequence of A."
- A and B are equivalent, $A \equiv B$, if M(A) = M(B).

26

Properties of Quantifiers

- Changing quantified variables names *does not* change the meaning:
 - $(\forall x \ P(x)) \equiv (\forall y \ P(y))$
 - $(\exists x \ P(x)) \equiv (\exists y \ P(y))$
- Proof: For any I = (D, R, G),
- $eval(\forall x \ P(x), I, \varnothing) =$ $\bigwedge_{d \in D} eval(P(x), I, \{x=d\}) =$

$$\bigwedge_{d \in D} eval(P(y), I, \{y=d\}) =$$

eval(
$$\forall y P(y), I, \emptyset$$
)

 $\operatorname{eval}(\forall x \, B, \, I, \, \theta) =$

 $\bigwedge_{d \in D^I} eval(B, I, \theta \cup \{x=d\})$

- Switching the order of universal quantifiers *does not* change the meaning:
 - $(\forall x \forall y P(x,y)) \equiv (\forall y \forall x P(x,y))$
- Proof: For any I = (D, R, G).
- eval($\forall x \ \forall y \ P(x,y), I, \emptyset$) = $\bigwedge_{d \in D} eval(\forall y \ P(x,y), I, \{x=d\}) =$

eval
$$(\forall x B, I, \theta) =$$

$$\bigwedge_{d \in D^I} eval(B, I, \theta \cup \{x=d\})$$

$$\bigwedge_{d \in D} \bigwedge_{d' \in D} eval(P(x,y), I, \{x=d, y=d'\}) =$$

$$\bigwedge_{I' \in D} \bigwedge_{d \in D} eval(P(x,y), I, \{x=d, y=d'\}) =$$

$$\bigwedge_{d' \in D} eval(\forall x \ P(x,y), \ I, \{y=d'\}) =$$

eval($\forall y \ \forall x \ P(x,y), I, \varnothing$)

• We may write $\forall x,y \ P(x,y)$) for $\forall x \forall y \ P(x,y)$)

28

Properties of Quantifiers

- We can also switch the order of existential quantifiers:
 - $(\exists x \exists y P(x,y)) \equiv (\exists y \exists x P(x,y))$
 - We may write $\exists x,y \ P(x,y)$) for $\exists x \exists y \ P(x,y)$)

$$eval(\exists xB, I, \theta) = \bigvee_{d \in D^I} eval(B, I, \theta \cup \{x=d\})$$

- Switching the order of universal and existential quantifiers *does* change meaning:
 - Everyone likes someone: $\forall x \exists y \text{ likes}(x, y)$
 - Someone is liked by everyone: $\exists y \forall x \text{ likes}(x,y)$
 - Everyone has a mother: $\forall x \exists y \text{ mother}(x, y)$
 - Someone is everyone's mother: $\exists y \forall x \text{ mother}(x,y)$

- $(\forall x \exists y p(x, y)) \rightarrow \exists y \forall x p(x, y)$ is not valid.
- **Proof**: Consider $I = (N, \{ < \}, \{ \})$, then $(\forall x \exists y p(x, y))$ states "for each integer x, there exists an integer y, such that x < y", which is true. $(\exists y \forall x p(x, y))$ states that "there exists a (maximal) integer y, such that x < y for any integer x", which is false. So $(\forall x \exists y p(x, y)) \rightarrow \exists y \forall x p(x, y)$ is false in I.
- $\models (\exists y \forall x \ p(x, y)) \rightarrow (\forall x \ \exists y \ p(x, y)).$
- **Proof**: For any $I = (D, \{p\}, \emptyset)$, if $eval(\exists y \forall x \ p(x, y), I, \emptyset) = 1$, then $eval(\forall x \ p(x, y), I, \{y=d\}) = 1$ for some $d \in D$.
- So $eval(\forall x \ p(x, y), I, \{y=d\}) = \bigwedge_{a \in D} eval(p(x,y), I, \{y=d, x=a\})$
- = $\bigwedge_{a \in D} eval(\exists y \ p(x, y), I, \{x=a\}) = eval(\forall x \ \exists y \ p(x, y), I, \emptyset) = 1$
- Hence, I is a model of $\forall x \exists y \ p(x, y)$.

30

Connections between All and Exists

 \forall and \exists 's De Morgan's laws:

- 1. $(\forall x \neg P(x)) \equiv \neg(\exists x P(x))$
- 2. $(\forall x \ Q(x)) \equiv \neg(\exists x \ \neg Q(x))$
- 3. $(\exists x \neg P(x)) \equiv \neg(\forall x P(x))$
- 4. $(\exists x \ Q(x)) \equiv \neg(\forall x) \neg Q(x)$

Proof: 1. $eval(\forall x \neg P(x), I, \varnothing) = \bigwedge_{d \in D^l} eval(\neg P(x), I, \{x=d\}) =$

$$\bigwedge_{d \in D^I} -eval(P(x), I, \{x=d\}) = -\bigvee_{d \in D^I} eval(P(x), I, \{x=d\}) = \\ = eval(\neg(\exists x \ P(x)), I, \varnothing)$$

- 2. From 1. letting $Q(x) = \neg P(x)$.
- 3. From 2. letting Q(x) = P(x), and negating both sides.
- 4. From 3. letting $Q(x) = \neg P(x)$.

- $(\exists x p(x) \rightarrow q(x)) \equiv (\forall x p(x)) \rightarrow (\exists x q(x))$
- Proof: X

$$\exists x p(x) \rightarrow q(x) \equiv$$

$$\exists x \neg p(x) \lor q(x) \equiv$$

$$(\exists x \neg p(x)) \lor (\exists x q(x)) \equiv$$

$$\neg(\forall x p(x)) \lor (\exists x q(x)) \equiv$$

$$(\forall x p(x)) \rightarrow (\exists x q(x))$$

32

Properties of Quantifiers

If x is not a free variable in B, then

1.
$$(\forall x \ A(x) \lor B) \equiv (\forall x \ A(x)) \lor B$$

2.
$$(\forall x \ A(x) \land B) \equiv (\forall x \ A(x)) \land B$$

3.
$$(\exists x \ A(x) \lor B) \equiv (\exists x \ A(x)) \lor B$$

4.
$$(\exists x \ A(x) \land B) \equiv (\exists x \ A(x)) \land B$$

Proof: 1. $eval(\forall x \ A(x) \lor B, I, \varnothing) = \bigwedge_{d \in D^I} eval(A(x) \lor B, I, \{x=d\}) =$

$$\bigwedge_{d \in D^I} (eval(A(x), I, \{x=d\}) \vee eval(B, I, \{x=d\})) =$$

$$(\bigwedge_{d \in D^{I}} eval(A(x), I, \{x=d\})) \vee eval(B, I, \emptyset) =$$
$$(eval(\forall x \ A(x), I, \{\})) \vee eval(B, I, \emptyset) =$$

$$eval((\forall x \ A(x)) \lor B, I, \varnothing)$$

We know that $\exists x \ \forall y \ p(x, y) \rightarrow \forall y \ \exists x \ p(x, y)$ is valid, but the converse is not valid. So we can't interchange $\exists x$ and $\forall y$. But for predicates that take single arguments, the two quantifiers can be interchanged:

$$\exists x \ \forall y \ (p(x) \to q(y)) \equiv \forall y \ \exists x \ (p(x) \to q(y)).$$

```
Proof: \exists x \ \forall y \ (p(x) \to q(y)) \equiv \exists x \ \forall y \ (\neg p(x) \lor q(y))
\equiv \exists x \ (\neg p(x) \lor \forall y \ q(y))
\equiv (\exists x \neg p(x)) \lor \forall y \ q(y)
\equiv \forall y \ (\exists x \neg p(x)) \lor q(y)
\equiv \forall y \ \exists x \ (\neg p(x) \lor q(y))
\equiv \forall y \ \exists x \ (p(x) \to q(y))
(\forall x \ A(x) \lor B) \equiv (\forall x \ A(x)) \lor B
(\exists x \ A(x) \lor B) \equiv (\exists x \ A(x)) \lor B
```

34

Properties of Quantifiers

- $A_1 = \forall x \ p(x, a) \rightarrow p(a, a)$ is satisfiable, but not valid.
- **Proof**: Consider I = ({a, b}, {p}, {a}), where p = {(a,a)}. eval(p(a,a), I, {}) = 1, so I is a model of A₁.
- Let I' = ({a, b}, {p}, {a}), where p = {(b,a)}.
 eval(p(a,a), I', Ø) = 0, eval(p(b,a), I', Ø) = 1, hence
 eval(p(b,a) → p(a, a), I', Ø) = 0, so A₁ is false in I'.
- $A_2 = (\forall x \ p(x, a)) \rightarrow p(a, a)$ is valid.
- **Proof**: For any $I = (D, \{p\}, \{a\}),$
- If $eval(p(a, a), I, \emptyset) = 1$, then A_2 is true in I.
- If $eval(p(a, a), I, \emptyset) = 0$, then $eval(\forall x p(x, a), I, \emptyset) = 0$.
- Thus, $eval(A_2, I, \emptyset) = 1$ in both cases for any interpretation I.
- Note: $A_2 \equiv \neg \forall x \ p(x, a) \lor p(a, a) \equiv \exists x \ p(x, a) \rightarrow p(a, a)$

- $A = (\forall x \ p(x) \lor q(x)) \rightarrow (\forall x \ p(x)) \lor (\exists x \ q(x))$ is valid.
- **Proof**: For any I = (D, R, G),
- if $eval((\forall x p(x)) \lor (\exists x q(x)), I, \emptyset) = 1$, then A is true in I.
- If $eval((\forall x p(x)) \lor (\exists x p(x)), I, \varnothing) = 0$,
- then $\operatorname{eval}(\forall x \ p(x), I, \varnothing) = 0$ and $\operatorname{eval}(\exists x \ q(x), I, \varnothing) = 0$.
- From eval($\forall x \ p(x), I, \varnothing$) = 0, eval($p(x), I, \{x = c\}$) = 0 for some c in D,
- From eval($\exists x \ q(x), I, \varnothing$) = 0, eval($q(x), I, \{x = c\}$) = 0
- So $eval(p(x) \lor q(x), I, \{x = c\}) = 0$
- So eval($\forall x \ p(x) \lor q(x), I, \varnothing$) = 0
- So A is true in I and I is a model of A.
- Since I is arbitrary, A is true in every interpretation.

36

Rules for Semantic Tableau

• α-rules (AND-rules)

$$\begin{array}{c|c} U \cup \{\alpha\} \\ \hline U \cup \{\alpha_{1,}\alpha_{2}\} \end{array}$$

• β-rules (OR-rules)

$$\frac{U \ \cup \ \{\ \beta\}}{U \ \cup \ \{\ \beta_1\} \qquad U \ \cup \ \{\ \beta_2\}}$$

α-rules

- α-rule produces a conjunction of formulas and creates one successor node (∧ is replaced by ",")
 - $A \wedge B \equiv A, B // "," \text{ for } \wedge$
 - A \downarrow B $\equiv \neg$ A, \neg B
 - $A \oplus B \equiv (A \vee B), (\neg A \vee \neg B)$
 - $A \leftrightarrow B \equiv (\neg A \lor B), (A \lor \neg B)$
 - \neg (A \vee B) \equiv \neg A, \neg B
 - \neg (A \rightarrow B) \equiv A, \neg B
 - \neg (A \uparrow B) \equiv A, B
 - $\neg \neg p \equiv p$

38

β-rules

- β-rule produces a disjunction of formulas and creates two successor nodes (for each disjunct)
 - $A \lor B \equiv A \mid B \mid "$ " for \lor , two branches
 - $A \rightarrow B \equiv \neg A \mid B$
 - A \uparrow B $\equiv \neg$ A $\mid \neg$ B
 - $\neg (A \land B) \equiv \neg A \mid \neg B$
 - $\bullet \neg (A \downarrow B) \equiv A \mid B$
 - \neg (A \oplus B) \equiv (A \wedge B) | (\neg A \wedge \neg B)
 - $\neg (A \leftrightarrow B) \equiv (\neg A \land B) \mid (A \land \neg B)$

Rules for Semantic Tableau

- α-rules (AND-rules)
- ∀-rules (Forall-rule)

$$\frac{\mathsf{U} \cup \{\alpha\}}{\mathsf{U} \cup \{\alpha_1, \alpha_2\}}$$

$$\frac{U \cup \{ \forall x A(x) \}}{U \cup \{ \forall x A(x), A(c) \}} \frac{U \cup \{ \neg \exists x A(x) \}}{U \cup \{ \neg \exists x A(x), \neg A(c) \}}$$
c is an existing constant

• β-rules (OR-rules)

$$\frac{U \cup \{\,\beta\}}{U \cup \{\,\beta_1\}} \quad U \cup \{\,\beta_2\}$$

• ∃-rules (Exist-rule)

$$\frac{U \cup \{\exists x \, A(x)\}}{U \cup \{A(c)\}} \quad \frac{U \cup \{\neg \forall x \, A(x)\}}{U \cup \{\neg A(c)\}}$$
c is a new constant

40

Example of Semantic Tableau

- $\neg ((\forall x \ p(x) \lor q(x)) \to (\forall x \ p(x)) \lor (\exists x \ q(x)))$
 - $\alpha \rightarrow$
- 1: $(\forall x \ p(x) \lor q(x)), \neg ((\forall x \ p(x)) \lor (\exists x \ q(x)))$
- $\alpha \neg \lor$
- 11: $(\forall x \ p(x) \lor q(x))$, $\neg \forall x \ p(x)$, $\neg \exists x \ q(x)$
- $\neg \forall$
- 111: $(\forall x \ p(x) \lor q(x)), \neg p(c), \ \neg \exists x \ q(x)$
- -∃
- 1111: $(\forall x \ p(x) \lor q(x)), \neg p(c), \neg \exists x \ q(x), \neg q(c)$
- \forall
- 11111: (1), $p(c) \lor q(c)$, $\neg p(c)$, $\neg \exists x \ q(x)$, $\neg q(c)$
- $\beta \lor$ closed
- 111111: (1), p(c), ¬p(c), ¬∃x q(x), ¬q(c)
 111112: (1), q(c), ¬p(c), ¬∃x q(x), ¬q(c)
- closed
- $\neg ((\forall x \ p(x) \lor q(x)) \to (\forall x \ p(x)) \lor (\exists x \ q(x)))$ is unsatisfiable
- $(\forall x \ p(x) \lor q(x)) \rightarrow (\forall x \ p(x)) \lor (\exists x \ q(x))$ is valid

Example of Semantic Tableau

(a) $\forall x \exists y \ p(x,y)$, (b) $\forall x,y,z, \ p(x,y) \land p(y,z) \rightarrow p(x,z)$, (c) $\forall x \neg p(x,x)$ What positive literals can be derived from (a), (b), (c)?

No finite

available.

models

Only infinite

models

(a), (b), (c)

- 1: (a), (b), (c), $\exists y \ p(c0, y)$,
- 11: (a), (b), (c), p(c0, c1)
- 111: (a), (b), (c), p(c0, c1), $\exists y \ p(c1, y)$
- 1111: (a), (b), (c), p(c0, c1), p(c1, c2)
- 11111: (a), (b), (c), p(c0, c1), p(c1, c2), $\exists y \ p(c2, y)$
- ...[by (a)]
- 111...1: (a), (b), (c), p(c0, c1), p(c1, c2), ..., $p(c_{k-1}, c_k)$
- ...[by (b)]
- 1111...1: (a), (b), (c), p(c0, c1), p(c1, c2), ..., p(c0, c2), $p(c0, c_k)$, p(c1, c3), ..., $p(c_{k-1}, c_k)$, $p(c_{k-2}, c_k)$

42

Infinite Models

• A model I = (D, R, G) is infinite if D is infinite.

(a) $\forall x \exists y \ p(x,y)$, (b) $\forall x,y,z, \ p(x,y) \land p(y,z) \rightarrow p(x,z)$, (c) $\forall x \neg p(x,x)$

- The above three formulas have an infinite model:
- $I = (N, \{ < \}, \{ \})$
- (a) For every x, there exists y, x < y;
- (b) "<" is transitive;
- (c) "<" is irreflexive, i.e., (x < x) is false for any x.

Prenex Normal Form

- A formula containing no quantifiers at all, or
- A formula of the form

$$Q_1x_1 Q_2x_2 \dots Q_nx_n P$$

where Q_i are either the universal or existential quantifier, x_i are variables and P is free of quantifiers.

$$e.g., \exists x \ \forall y \ (p(x) \rightarrow q(y)).$$

51

Conversion to Prenex Normal Form

- 1. Replace implications, biconditionals, etc., by and-or-negation. E.g., $(A \rightarrow B)$ by $(\neg A \lor B)$
- 2. Move "inwards" until there are no quantifiers in the scope of a negation, by deMorgan's laws.
- 3. Rename variables so each variable following a quantifier has a unique name.
- 4. Move quantifiers to the front of the sentence, without changing their order.
- Prenex normal forms are not unique

Example of Prenex NF

$$\forall x ((C(x) \land \exists y (T(y) \land L(x, y))) \rightarrow \exists y (D(y) \land B(x, y)))$$

$$\forall x (\neg(C(x) \land \exists y (T(y) \land L(x, y))) \lor \exists z (D(z) \land B(x, z)))$$

$$\forall x (\neg \exists y (C(x) \land T(y) \land L(x, y)) \lor \exists z (D(z) \land B(x, z)))$$

$$\forall x \forall y \left(\neg (C(x) \land T(y) \land L(x,y) \right) \lor \ \exists z \left(D(z) \land B(x,z) \right) \right)$$

$$\forall x \forall y \exists z \left(\neg (C(x) \land T(y) \land L(x, y)) \lor (D(z) \land B(x, z)) \right)$$

If you want to restore the implication:

$$\forall x \forall y \exists z \ (C(x) \land T(y) \land L(x,y)) \rightarrow (D(z) \land B(x,z))$$

Another prenex normal form is:

$$\forall x \exists z \forall y (C(x) \land T(y) \land L(x, y)) \rightarrow (D(z) \land B(x, z))$$

53

Skolemization: Removal of Quantifiers

- 1. Obtain a prenex NF B = $Q_1x_1 Q_2x_2 ... Q_nx_n P$
- 2. For j := 1 to n do
- 3. If $(Q_i \text{ is } \forall)$ remove $Q_i x_i$ from B
- 4. If $(Q_j \text{ is } \forall \exists)$ remove $Q_j x_j$ and replace x_j by f(V), where V is the set of free variables in B

Example: $A = \forall x \exists z \forall y (C(x) \land T(y) \land L(x,y)) \rightarrow (D(z) \land B(x,z))$

- B := A
- 1. $B := \exists z \forall y (C(x) \land T(y) \land L(x, y)) \rightarrow (D(z) \land B(x, z))$
- 2. $B := \forall y (C(x) \land T(y) \land L(x, y)) \rightarrow (D(f(x)) \land B(x, f(x)))$
- 3. $B := (C(x) \wedge T(y) \wedge L(x, y)) \rightarrow (D(f(x)) \wedge B(x, f(x)))$
- **Theorem**: $A \approx B$, i.e., A and B are equally satisfiable.

CNF: Conjunction Normal Forms

- 1. Obtain a PNF of A: $B = Q_1 x_1 Q_2 x_2 ... Q_n x_n P$
- 2. Remove quantifiers by Skolemization
- 3. Convert the formal into CNF as in PL

Example:

- A = $\forall x \exists z \forall y (C(x) \land T(y) \land L(x, y)) \rightarrow (D(z) \land B(x, z))$
- B = $(C(x) \land T(y) \land L(x, y)) \rightarrow (D(f(x)) \land B(x, f(x)))$
- C = { (-C(x) | -T(y) | -L(x, y) | D(f(x)), $(-C(x) | -T(y) | -L(x, y) | B(x, f(x)) }$
- **Theorem**: $A \approx C$, i.e., A and C are equally satisfiable.

55

Converting formulas to CNF

- No need to convert to PNF
- 1. Obtain NNF (negation normal form) A
 - a. Get rid of \leftrightarrow or \oplus
 - b. Get rid of \rightarrow
 - c. Push ¬ downward
- 2. Remove quantifiers by Skolemization to get B
 - a. Rename quantified variables
 - b. Replace existentially quantified variables by Skolem constants/functions.
 - c. Discard all universal quantifiers
- 3. Convert B into clause set C
 - a. Convert B into CNF
 - b. Convert CNF into clause set
 - c. Standardize the variables in clauses

Converting formulas to CNF

1a. Eliminate all \leftrightarrow connectives

$$(P \leftrightarrow Q) \Rightarrow ((P \rightarrow Q) \land (Q \rightarrow P))$$

1b. Eliminate all \rightarrow connectives

$$(P \rightarrow Q) \Rightarrow (\neg P \lor Q)$$

1c. Reduce the scope of each negation symbol to a single predicate

$$\neg\neg P \Rightarrow P$$

$$\neg (P \lor Q) \Longrightarrow \neg P \land \neg Q$$

$$\neg (P \land Q) \Rightarrow \neg P \lor \neg Q$$

$$\neg \forall x P \Rightarrow \exists x \neg P$$

$$\neg \exists x P \Rightarrow \forall x \neg P$$

57

Converting formulas to clausal form Skolem constants and functions

- 2a. Standardize variables: rename all variables so that each quantifier has its own unique variable name
- 2b. Eliminate existential quantification by introducing Skolem constants/functions

$$\exists x \ P(x) \Rightarrow P(C)$$

C is a Skolem constant (a brand-new constant symbol that is not used in any other sentence)

$$\forall x \exists y P(x,y) \Rightarrow \forall x P(x, f(x))$$

since \exists is within scope of a universally quantified variable, use a **Skolem function f** to construct a new value that **depends on** the universally quantified variable.

f must be a brand-new function name not occurring anywhere

Converting formulas to clausal form

- 2c. Remove universal quantifiers by (1) moving them all to the left end; (2) making the scope of each the entire sentence; and (3) dropping the "prefix" part $Ex: \forall x \ P(x) \Rightarrow P(x)$
- 3a. Put into conjunctive normal form (conjunction of disjunctions) using distributive and associative laws

$$(P \land Q) \lor R \Rightarrow (P \lor R) \land (Q \lor R)$$
$$(P \lor Q) \lor R \Rightarrow (P \lor Q \lor R)$$

- 3b. Split conjuncts into separate clauses
- 3c. Standardize variables so each clause contains only variable names that do not occur in any other clause

59

An example

 $\forall x (P(x) \to ((\forall y)(P(y) \to P(f(x,y))) \land \neg(\forall y)(Q(x,y) \to P(y))))$

- 1a. Eliminate \leftrightarrow
- 1b. Eliminate \rightarrow

$$\forall x \left(\neg P(x) \lor (\forall y \left(\neg P(y) \lor P(f(x,y)) \right) \land \neg \forall y \left(\neg Q(x,y) \lor P(y) \right) \right)$$

1c Reduce scope of negation

$$\forall x \left(\neg P(x) \lor (\forall y \left(\neg P(y) \lor P(f(x,y)) \right) \land \exists y \left(Q(x,y) \land \neg P(y) \right) \right)$$

2a. Standardize variables

$$\forall x \left(\neg P(x) \lor (\forall y \left(\neg P(y) \lor P(f(x,y)) \right) \land \exists z \left(Q(x,z) \land \neg P(z) \right) \right)$$

2b. Eliminate existential quantification

$$\forall x \left(\neg P(x) \lor (\forall y \left(\neg P(y) \lor P(f(x,y)) \right) \land (Q(x,g(x)) \land \neg P(g(x)))) \right)$$

2c. Drop universal quantification symbols

$$(\neg P(x) \lor ((\neg P(y) \lor P(f(x, y))) \land (Q(x, g(x)) \land \neg P(g(x)))))$$

An Example (continued)

3a. Convert to conjunction of disjunctions

$$(\neg P(x) \mid \neg P(y) \mid P(f(x,y))) \land (\neg P(x) \mid Q(x,g(x))) \land$$

$$(\neg P(x) \mid \neg P(g(x)))$$

3b. Create separate clauses

$$(\neg P(x) \mid \neg P(y) \mid P(f(x,y)))$$

$$(\neg P(x) \mid Q(x, g(x)))$$

$$(\neg P(x) \mid \neg P(g(x)))$$

3c. Standardize variables

$$(\neg P(x) \mid \neg P(y) \mid P(f(x,y)))$$

$$(\neg P(z) \mid Q(z, g(z)))$$

$$(\neg P(w) \mid \neg P(g(w)))$$

61

Colonel West is a criminal

- 1. It is a crime for an American to sell weapons to a hostile country.
- 2. The country Nono has some missiles.
- 3. All of its missiles were sold to it by Colonel West.
- 4. Nono is an enemy of USA.
- 5. Colonel West is an American.

Modeling with Horn Clauses: at most one positive literal

$$(\neg A_1 \,|\, \neg A_2 \,|\, \neg A_3 \,|\, \neg A_4 \,|\, B) \ as \ A_1 \wedge A_2 \wedge A_3 \wedge A_4 \to B$$

1. It is a crime for an American to sell weapons to a hostile country.

```
American(x) \land Weapons(y) \land Hostile(z) \land Sell(x,y,z) \rightarrow Criminal (x)
```

2. The country Nono has some missiles.

```
// \exists x \text{ Owns}(\text{Nono}, x) \land \text{Missile}(x)
Missile(M1) // Skolem Constant introduction
```

Owns(Nono, M1)

66

Modeling with Horn Clauses: at most one positive literal

- 3. All of its missiles were sold to it by Colonel West. $Missile(x) \land Owns(Nono,x) \rightarrow Sells(West,x,Nono).$
- 4. Nono is an enemy of USA. Enemy(Nono,American).
- 5. Colonel West is an American.

American(West).

// common sense

 $Missile(x) \rightarrow Weapon(x)$

Enemy(x, America) \rightarrow Hostile(x)