MaxSAT: Maximum Satisfiability

Logic in Computer Science

3SAT vs 2SAT

- SAT: Decide if a set of clauses is satisfiable.
- 3SAT: Decide if a 3CNF is satisfiable.
- 2CNF: Each clause contains at most 2 literals.
- 2SAT: Decide if a 2CNF is satisfiable.

Theorem: 2SAT can be solved in polynomial time.

2SAT is in P

<u>Theorem:</u> 2SAT is polynomial-time decidable. <u>Proof:</u> We'll show how to solve this problem efficiently using path searches in graphs...

3

<text><text><text>

Graph Construction

G = (V, E)

- V: Vertex for each variable and the negation of a variable
- E: Edge (α, β) iff there exists a clause equivalent to $(\neg \alpha \mid \beta)$.
- Every clause (A | B) of 2CNF contributes two edges: (¬A, B) and (¬B, A).

5

Observation

<u>Claim</u>: If the graph contains a path from α to β , denoted by $\alpha \Rightarrow \beta$, it also contains a path from $\neg\beta$ to $\neg\alpha$.

<u>Proof:</u> If there's an edge (α, β) , then there's also an edge $(\neg\beta,\neg\alpha)$. Both edges come from clause $(\neg\alpha \mid \beta)$ and $\alpha \rightarrow \beta \equiv \neg\beta \rightarrow \neg\alpha$.

Correctness

<u>Thereom:</u> A 2CNF formula φ is unsatisfiable iff there exists a variable x, such that:

- 1. there is a path from x to $\neg x$ in the graph
- 2. there is a path from $\neg x$ to x in the graph That is, x and $\neg x$ are in a cycle.

7

Correctness (1) Suppose there are paths x ⇒ ¬x and ¬x ⇒ x for some variable x, then both x → ¬x and ¬x → x are true, because the implication relation is transitive. However, (x → ¬x) ∧ (¬x → x) ≡ (x ↔ ¬x) ≡ false

What is MaxSAT?

The problem of determining the maximum number of clauses, of a given propositional formula in conjunctive normal form (CNF), that can be made true by an interpretation of the formula.

What is the MaxSAT solution for S? $S = \{ (\neg p), (p | q), (p | \neg q), (p | r), (p | \neg r), (q | r) \}$ Solutions: $\sigma = \{ p, q, r \}, \{ p, q, \neg r \}, \text{ or } \{ p, \neg q, r \}$. Five satisfied and one falsified.

15

Why Bother? Simply determining that an instance is UNSAT may not be enough. We want the optimal way to make the instance satisfiable by allowing for *some* clauses to be unsatisfied. AI University course scheduling … EDA (Electronic Design Automation) Over constrained system analysis FPGA routing

Applications of MaxSAT

Many real-world applications can be easily and neatly encoded to MaxSAT:

- Eclipse platform uses MaxSAT for managing the plugins dependencies
- Error localization in C code
- Debugging of hardware designs
- Reasoning over Biological Networks (Genes)
- Course timetabling
- Final exam scheduling
- . . .

23

Applications of MaxSAT in Automotive (Re)Configuration Applications of MaxSAT in Automotive Configuration, by: Rouven Walter and Christoph Zengler and Wolfgang Kuchlin The after-sales business asks for extensions, replacements, or removal of components of a valid configuration with minimal effort. Automotive configuration can be represented as a CNF formula in propositional logic, where each model is called a valid configuration of a car. http://ceur-ws.org/Vol-1128/paper3.pdf

Branch&Bound for Hybrid MaxSAT

proc *HyMaxSATBB*(*H*, *F*, σ , *soln*) // return the minimal cost of any interpretation *res* := *BCP*(*H*); **if** (*res* = *false*) **return** *false*; // hard causes violated 3 // Assume *res* = (*U*, *S*) σ := $\sigma \cup U$; *F* := *simplifySoft*(*F*, σ); **if** *soln* \leq *lowerBound*(*F*) **return** *soln*; // cut by bound *A* := *pickLiteral*(*S* \cup *F*); // branching on *A*. **if** (*A* = *nil*) **return** *countFalseClauseWeight*(*F*, σ); *soln* := *min*(*soln*, *HyMaxSATBB*(*S* \cup {(*A*)}, *F*, σ , *soln*)); **return** *min*(*soln*, *HyMaxSATBB*(*S* \cup {(*A*)}, *F*, σ , *soln*));

