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MaxSAT: Maximum Satisfiability

Logic in Computer Science

3SAT vs 2SAT

• SAT: Decide if a set of clauses is satisfiable.

• 3SAT: Decide if a 3CNF is satisfiable.

• 2CNF: Each clause contains at most 2 literals.

• 2SAT: Decide if a 2CNF is satisfiable.

Theorem: 2SAT can be solved in polynomial time.

1

2



2

3

2SAT is in P

Theorem: 2SAT is polynomial-time decidable.

Proof: We’ll show how to solve this problem 
efficiently using path searches in graphs…
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Searching in Graphs

Theorem: Given a graph G=(V,E) and two vertices 
s,tV, finding if there is a path from s to t in G
takes O(|V|+|E|) time.

Proof: Use some search algorithm (DFS/BFS). 
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Graph Construction

G = (V, E)

• V: Vertex for each variable and the negation 
of a variable

• E: Edge (, ) iff there exists a clause 
equivalent to ( | ). 

• Every clause (A | B) of 2CNF contributes two 
edges: (A, B) and (B, A).
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Observation

Claim: If the graph contains a path from  to , 
denoted by   , it also contains a path from 
 to .

Proof: If there’s an edge (, ), then there’s also 
an edge (,). Both edges come from 
clause ( | ) and     .
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Correctness

Thereom: A 2CNF formula  is unsatisfiable
iff there exists a variable x, such that:

1. there is a path from x to x in the graph

2. there is a path from x to x in the graph

That is, x and x are in a cycle. 
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Correctness (1)

• Suppose there are paths x x and x  x
for some variable x, then both x x and 
x  x are true, because the implication 
relation is transitive. However, 

• (x x)  (x  x)  (x x)  false
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Correctness (2)
• S = { (-x | y), (x | -z), (y | z),  (-y | z)  }

• Suppose v and v are not in a cycle for any v.

• Construct an assignment as follows:

x

y 
x 

z

z 

y

x

1. If there is a 
path x  x,
assign x = 1; 
If there is a 
path x  x,
assign x = 0;

y

z

2. If there is a 
path x  y, x = 1,
assign y = 1.

x

y

z
3. Assign arbitrary values 
to unassigned vertices
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Correctness (2)

Claim: The algorithm of assigning truth values 
is well defined.

Proof: The path relation x  y represents the 
implication x  y. If x = 1, then it must be the case 
that y = 1, so that x  y is true.

If there exists a path x  x  y y, such that x = 
1 and y = 0 by the first line of the algorithm, but x 
y is a violation of the second line, then from x  y, 
we have y x, thus, x, x, y, y are in a cycle, 
a contradiction to the condition that x, x, are not in 
a cycle.

9

10



6

11

2SAT is in P

We get the following efficient algorithm for 
2SAT:

–For each variable x find if there is a path 
from x to x and vice-versa.

–Reject if any of these tests succeeded.

–Accept otherwise.

 2SATP. 
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2SAT can done in linear time

• Use SCC (Strongly Connected Components) 
to group vertices which share a common 
cycle.

• x and x are in a cycle iff they are in the 
same SCC.

• SCC can be found in the time O(|V|+|E|)

• https://en.wikipedia.org/wiki/Strongly_conne
cted_component
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2SAT is linear solvable

C = { c1: ( p | q ),  c2: ( -p | -r ), c3: ( p | -r ), 

c4: ( -q | r ), c5: ( q | s ),  c6: ( -r | -s ) }

q

-s 

-p 

r p 

-r s 

-q 

Implication
graph of C:

SSC: Strongly Connected Components

2SAT is linear solvable

C = { c1: ( p | q ),  c2: ( -p | -r ), c3: ( p | -r ), 

c4: ( -q | r ), c5: ( q | s ),  c6: ( -r | -s ) }

q

-s 

-p 

r p 

-r s 

-q 

S1
S2

SCC: S1 = { q, r, -s, -p }, S2 = { p, -q, -r, s }
G’ = ( { S1, S2}, { (S1, S2) } 
G’ has no cycles; the topological order is S1, S2.
Assign 0 to S1, 1 to S2. 
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What is MaxSAT?

The problem of determining the maximum number of 
clauses, of a given propositional formula in conjunctive 
normal form (CNF), that can be made true by an 
interpretation of the formula.

What is the MaxSAT solution for S?
S = { (p), (p | q), (p | q), (p | r),  (p |  r ), (q | r) }
Solutions:  = { p, q, r }, { p, q,  r }, or { p,  q, r }.
Five satisfied and one falsified. 

Why Bother?
• Simply determining that an instance is UNSAT 

may not be enough. 
• We want the optimal way to make the instance 

satisfiable by allowing for some clauses to be 
unsatisfied.

• AI
– University course scheduling
– …

• EDA (Electronic Design Automation)
– Over constrained system analysis
– FPGA routing
– …
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SAT: Propositional Satisfiability

MSAT: Decide if a formula (CNF) is satisfiable

𝑎  ∧       (C1)
(¬𝑎 ∨ 𝑏)   ∧       (C2)

1 (¬𝑏 ∨ 𝑐)   ∧       (C3)
2 (¬𝑐 ∨ 𝑑)   ∧ (C4)

3 ¬𝑑             (C5)
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Maximum Satisfiability (Max-SAT)

MaxSAT: Find an interpretation to maximize 
the number of satisfiable clauses, or to

Solution:  a = 1, b = 1, c = 1, d = 1 C5 is false

𝑎  ∧       (C1)
(¬𝑎 ∨ 𝑏)  ∧       (C2)

1 (¬𝑏 ∨ 𝑐)   ∧       (C3)
2 (¬𝑐 ∨ 𝑑)   ∧ (C4)

3 ¬𝑑             (C5)

minimize the number of 
falsified clauses.
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Weighted MaxSAT

Weighted MaxSAT: Assign weights to clauses and 
find an interpretation to maximize an objective.

Maximize
20×C1+30×C2+ 4×C3+2×C4+7×C5

for those satisfied clauses.
Or minimize the cost for those 
falsified clauses.

=

Solution:  a = 1, b = 1, c = 1, d = 0
C4 is false and Objective = 61 (or cost = 2).

𝑎  ∧       (C1)
¬𝑎 ∨ 𝑏  ∧       (C2)

1 ¬𝑏 ∨ 𝑐  ∧       (C3)
2 ¬𝑐 ∨ 𝑑  ∧ (C4)

3 ¬𝑑             (C5)

20:
30:

4:
2:
7:
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Hybrid MaxSAT
Hybrid MaxSAT: Clauses are divided into hard/soft 
subsets; assign weights to soft clauses and find an 
interpretation to maximize an objective and satisfy 
all hard clauses.

Subject to          C1 and C2ject to          

Maximize 4×C3+2×C4+7×C5

=

Solution:  a = 1, b = 1, c = 1, d = 0
C4 is false and Objective = 11 (cost = 2)

𝑎  ∧       (C1)
¬𝑎 ∨ 𝑏  ∧       (C2)

1 ¬𝑏 ∨ 𝑐  ∧       (C3)
2 ¬𝑐 ∨ 𝑑  ∧ (C4)

3 ¬𝑑             (C5)

4:
2:
7: or Minimize 4×C3+2×C4+7×C5
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Maximum Clique of a Graph

• Encode the maximum clique problem in MaxSAT

• Propositional variables (True means in the clique):

{ a, b, c, d, e }

Hybrid MaxSAT:

Hard = { (-a| -e), (-b | -c), (-c | -e) }

Soft = { (a; 1), (b; 1), (c; 1), (d; 1), (e; 1)}

Weighted MaxSAT:

C = { (-a| -e; 5), (-b | -c; 5), (-c | -e; 5), (a; 1), (b; 1), (c; 1), 
(d; 1), (e; 1)}
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Weighted vs Hybrid: Same Power

Hard

Soft

+

Soundness Conditions

Objectives

Balancing 
tradeoffs 

(e.g., precision
vs. scalability)

Handling 
uncertainty

(e.g., incorrect 
specs)

Modeling 
missing data
(e.g., partial 
programs)

…

Increased Expressive Power for Applications
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Applications of MaxSAT 

Many real-world applications can be easily and 
neatly encoded to MaxSAT:
• Eclipse platform uses MaxSAT for managing the 

plugins dependencies 
• Error localization in C code 
• Debugging of hardware designs 
• Reasoning over Biological Networks (Genes)
• Course timetabling 
• Final exam scheduling
• . . . 

Applications of MaxSAT in 
Automotive (Re)Configuration 

Applications of MaxSAT in Automotive Configuration,  
by: Rouven Walter and Christoph Zengler and 
Wolfgang Kuchlin

The after-sales business asks for extensions, 
replacements, or removal of components of a valid 
configuration with minimal effort.
Automotive configuration can be represented as a CNF 
formula in propositional logic, where each model is 
called a valid configuration of a car.
http://ceur-ws.org/Vol-1128/paper3.pdf
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MaxSAT 

• Very hard problems --- NP-HARD
• Optimization of SAT
• Difficult to find an approximate solution of 

the problem
• Large-size MAX-SAT instances cannot be 

solved exactly, and one must resort to 
approximation algorithms and heuristics. 

26

Max2SAT

• Instance: A 2CNF formula  and a goal K.

• Problem: To decide if there is an assignment 
satisfying at least K of ’s clauses.

(x | y) 
(y |  z) 
(x | z) 
(z | y)

(x | y) 
(y |  z) 
(x | z) 
(z | y)

Example: a 2CNF formula
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Max2SAT is NP Complete

Theorem: Max2SAT is NP-Complete.

Proof: Max2SAT is clearly in NP.

We’ll show 3SAT p Max2SAT.

3SAT                               Max2SAT

(..|..|..)…(..|..|..) (..|..)…(..|..) p K
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Gadgets

Claim: Let

(x,y,z,w) = (x)(y)(z)(w)
(x|y)(y|z)(z|x)
(x|w)(y|w)(z|w).

• Every satisfying assignment for (x|y|z) can be 
extended into an assignment which satisfies exactly 
7 of the clauses.

• Other assignments can satisfy at most 6 of the 
clauses.



Proof: By truth table on vars.
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The Construction

• For each 1im of clauses, replace the i-th
clause of the 3CNF formula (||) with a 
corresponding (,,,xi) to get a 2CNF 
formula.

• Take K=7m. 

Make sure this 
construction is 
polynomial
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Correctness

• Every satisfying assignment for the 3CNF
formula can be extended into an assignment 
which satisfies 7m clauses in 2CNF.

• If 7m clauses of the 2CNF formula are 
satisfied, each clause  has 7 satisfied 
clauses, so the original formula is satisfied.
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Conclusion

• 3SATpMax2SAT and Max2SATNP

• Max2SAT is NP-Complete. 
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2SAT vs 3SAT vs Max2SAT

• We’ve seen that checking if a given CNF
formula is satisfiable:

–Polynomial-time decidable, if every clause 
contains up to 2 literals (2SAT).

–NP-hard, if each clause has up to 3 literals 
(3SAT).

–NP-hard, if each clause contains up to 2 
literals and we look for an optimal solution 
(Max2SAT). 
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Solving MaxSAT

• Traditional approaches for MaxSAT:

–Systematic search: check every 
interpretation to see which interpretation is 
optimal. It’s complete but has limited 
scalability

–Local search: randomly start with an 
interpretation and search its neighborhood 
for a better one. It’s scalable but sometimes 
far from optimum (local optimum)

33
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Assignments from case-split

{(x|y|z; 3),

(¬x|y; 2)}

x=1
(y;2) (;2)

y=0

 empty clause. 
It cannot be satisfied,
2 is necessary cost

We may use case-splits as in DPLL to try all 
possible interpretations, to find which one is 
optimal. – This is a systematic search.
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Systematic Search: 2 Key Features
The DPLL process, and extensions, for SAT

• Search guided by
– “Well-informed” heuristics

– Clauses falsified or made “critical” during search

• Efficiency relies heavily on the ability to avoid local 
inconsistencies and prune the search space

• Unit propagation:
if a=0, b=0, and have clause (a or b or c),
better force c=1 right away

• Clause learning:
if a search branch reaches a contradiction,
learn why this happened and never let this happen again
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Systematic Search: 2 Key Features

Unfortunately, unit propagation and clause learning are
not suitable for case-split MaxSAT solvers.

• Unit resolution is not sound for MaxSAT

– S = { (p), (p | q), (p | q), (p | r),  (p |  r ), (q | r) }

Using unit resolution, S is simplified to S’:

– S’ = { (p), (q), (q), (r),  ( r), (q | r) }
S’s minimal cost is 1; the cost of S’ is at least 2

• How to assign costs to new clauses?

Systematic MaxSAT solvers are significantly less scalable than 
systematic SAT solvers
e.g., verification instance  cmu-bmc-barrel6.cnf:

– best MaxSAT solvers need 20-30 minutes
– MiniSat needs ~2 seconds

36
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Branch&Bound for Hybrid MaxSAT

proc HyMaxSATBB(H, F, σ, soln) 

// return the minimal cost of any interpretation 

1 res := BCP(H);

2 if (res = false) return false; // hard causes violated

3 // Assume res = (U, S)

4 σ := σ  U;

5 F := simplifySoft(F, σ);

6 if soln  lowerBound(F) return soln;  // cut by bound

7 A := pickLiteral(S  F); // branching on A.

8 if (A = nil) return countFalseClauseWeight(F, σ);

9 soln := min(soln, HyMaxSATBB(S  {(A)}, F, σ, soln));

10 return min(soln, HyMaxSATBB(S {(A)}, F, σ, soln));

38

Branch&Bound: DPLL-like search

(LB) Lower Bound

(CC) Current Cost

If        then prune

va
ria

bl
es

under estimation of the best
solution in the sub-tree

= best solution so far

Each node is a MaxSAT subproblem
We look for the minimal cost solution

LB CC
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Illustration: Branch&Bound Search

CC = 0
LB = 6

CC = 2
LB = 5

CC = 4
LB = 3

CC = 5
LB = 3

Solution Found!
Cost = 8

Solution = ∞Solution = 8

CC = 5
LB = 3

CC = 4
LB = 3

Solution Found!
Cost = 7

Solution = 7

CC = 2
LB = 5

CC = 0
LB = 6

CC = 2
LB = 4

CC = 4
LB = 3

CC = 3
LB = 5

Optimal!

CC: Current Cost
LB: Lower Bound

Simplification Rules for Soft Clauses

• zero elimination: Weighted clauses with zero 
weights can be discarded.

• tautology elimination: Valid clauses are always 
removed.

• identical merge: Identical clauses are merged into 
one.

• (α; w1), (α; w2)  (α; w1 + w2)

• unit clash: Unit clauses with complement literals 
can be reduced to one

• (A; w1), (A; w2)  (A; w1 - w2), (0; w2)

• weighted resolution

39
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Weighted Resolution

(x | A; u), (¬x | B; w)   

(A | B; m),
(x | A; u-m),
(¬x | B; w-m),
(x | A | ¬B; m),
(¬x | ¬A | B; m)

where m=min{u,w}

Example: 
(p | q; 2) and (¬p | q; 3) produces 5 clauses:
(q | q; 2), (p | q; 0), (¬p | q; 1), (p | q | ¬q; 2), (p | ¬q | q; 2).
which are simplified to  (q; 2), (¬p | q; 1).
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Example: Meaning of weighted clauses

(x|y; 3), 

(x|z; 3) =

x

y
y

z
x

x

y

z

y

z
x

3

3 z

33 3

(y|z; 3),
(x|y; 3-3),
(x|z; 3-3),
(x|y|z; 3),
(x|y|z; 3)

41
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Linear Programming (LP) for 
Low Bound of Hybrid MaxSAT

Subject to          C1
Subject to          C2

Minimize 4×C3+2×C4+7×C5

=
𝑎  ∧       (C1)

¬𝑎 ∨ 𝑏  ∧       (C2)
1 ¬𝑏 ∨ 𝑐  ∧       (C3)

2 ¬𝑐 ∨ 𝑑  ∧ (C4)
3 ¬𝑑             (C5)

4:
2:
7:

Minimize 4×C3+2×C4+7×C5
Subject to       a  1,

(1 – a) + b  1, 
1 – b) + c   C3, 
(1 – c) + d  C4,

(1 – d)  C5,
a, b, c, d, C3, C4, C5  { 0, 1 }

Integer Programming Linear Programming 
Minimize 4×C3+2×C4+7×C5
Subject to          a  1,

(1 – a) + b  1, 
1 – b) + c   C3, 
(1 – c) + d  C4,

(1 – d)  C5,
0  a, b, c, d, C3, C4, C5  1

Local Search: “Natural” for MaxSAT?

• Local search methods walk on a 
landscape composed of truth 
assignments
– Height = number of unsatisfied 

constraints

• At every point in time, have a 
(sub-optimal) MaxSAT
solution!
– “anytime solution” to MaxSAT

• Bottleneck: local minima, just as 
in local search for SAT
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Ongoing research 
topics
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