CS4350: Logic in computer Science

Normal Forms

1

Logical Operators

- Disjunction Do we need all these?

 \land - Conjunction

¬ - Negation

 \rightarrow -Implication $A \rightarrow B \equiv \neg A \lor B$

 \oplus - Exclusive or $A \oplus B \equiv (A \land \neg B) \lor (\neg A \land B)$

 \leftrightarrow - Biconditional $A \leftrightarrow B \equiv (A \rightarrow B) \land (B \rightarrow A)$

↑ - Nand $A \uparrow B \equiv \neg (A \land B)$ ↓ - Nor $A \downarrow B \equiv \neg (A \lor B)$

Logical Operators

- There are two nullary Boolean operators, 1, which is interpreted as true, and 0, which is interpreted as false.
- There are 4 unary operators:

$$-f_1(x) = 0$$
; $f_2(x) = 1$; $f_3(x) = x$; and $f_4(x) = \neg x$.

- There are 16 binary Boolean operators:
 - $-\wedge$, \vee , \rightarrow , \oplus , \leftrightarrow , \uparrow , and \downarrow are some of them.
- There are 64 trinary Boolean operators:
 - -ite(x, y, z) = if x then y else z is one of them
 - ite(x, y, z) \equiv x \wedge y \vee \neg x \wedge z
- How many n-ary Boolean operators? 2²ⁿ

3

Functionally Sufficient

- A set of logical operators is called (functionally) sufficient if every formula is logically equivalent to a formula involving only this set of logical operators.
- \wedge , \vee , and \neg form a sufficient set of operators.
- Are there other sufficient sets?
- YES, because $A \wedge B \equiv \neg (\neg A \vee \neg B)$, we may drop \wedge and leave \vee and \neg as one.

Functionally Sufficient

- $\{\vee, \neg\}$ is sufficient.
- $\{ \land, \neg \}$ is sufficient.
- { ite, 0, 1 } is sufficient:
 - $\neg x = ite(x, 0, 1)$
 - $x \wedge y = ite(x, ite(y, 1, 0), 0)$
- ITE operator can implement any two variable logic function. There are 16 such functions corresponding to all subsets of B²:

5

ITE Operator: ite(f, g, h) = fg + fh

Output of o(x, y) on (0,0), (0,1), (1,0), and (11) $y = ite(y, 1, 0); \overline{y} = ite(y, 0, 1)$ Subset Name Expression **Equivalent Form** 0000 constant 0 0001 AND(x, y) $\textbf{X} \wedge \textbf{y}$ ite(x, y, 0) 0010 x > yite(x, y, 0) $x \wedge \neg y$ 0011 1st projection ite(x, 1, 0) Х 0100 x < y ite(x, 0, y) $\neg x \wedge y$ 0101 2nd projection ite(y, 1, 0) 0110 XOR(x, y) $\mathbf{x}\oplus\mathbf{y}$ ite (x, \bar{y}, y) 0111 OR(x, y)ite(x, 1, y) $x \vee y$ 1000 NOR(x, y) $x \downarrow y$ ite(x, 0, y)1001 EQ(x, y)ite(x, y, y) $x \leftrightarrow y$ 1010 NOT(y) ite(y, 0, 1) 1011 $x \geq y \,$ $x \vee \neg \; y$ ite(x, 1, y) 1100 NOT(x) ite(x, 0, 1) 1101 ite(x, y, 1) $x \le y$ $\neg x \lor y$ 1110 NAND(x, y) x ↑ y ite $(x, \bar{y}, 1)$ 1111 constant 1

Are $\neg(p\lor(\neg p\land q))$ and $(\neg p\land \neg q)$ equivalent?

$$\neg(p\lor(\neg p\land q))$$

$$\equiv \neg p \land \neg(\neg p\land q) \qquad \text{DeMorgan}$$

$$\equiv \neg p \land (\neg \neg p\lor \neg q) \qquad \text{DeMorgan}$$

$$\equiv \neg p \land (p\lor \neg q) \qquad \text{Double Negation}$$

$$\equiv (\neg p\land p)\lor(\neg p\land \neg q) \qquad \text{Distribution}$$

$$\equiv (p\land \neg p)\lor(\neg p\land \neg q) \qquad \text{Commutative}$$

$$\equiv 0 \lor (\neg p\land \neg q) \qquad \text{And Contradiction}$$

$$\equiv (\neg p\land \neg q) \qquad \text{Identity}$$

7

Normal Form

- So $\neg(p\lor(\neg p\land q))$ and $(\neg p\land \neg q)$ are equivalent, even though both are expressed with only \land , \lor , and \neg .
- It is still hard to tell without doing a proof.
- What we need is a standard format of a formula that uses a small set of operators.
- This unique representation is called a *Normal Form*.

Normal Forms

A restricted set of formulas such that other equivalent formulas can be converted to.

- NNF: Negation Normal Form
 - Use ${ ¬, ∨, ∧ }$
- CNF: Conjunctive Normal Form
 - Use $\{\neg, \lor, \land\}$
- DNF: Disjunctive Normal Form
 - Use $\{\neg, \lor, \land\}$
- INF: ITE Normal Form
 - Use { ite, 0, 1}

9

Negation Normal Form

- A literal is either a propositional variable (positive literal) or the negation of a proposition variable (negative literal).
- A formal is in negation normal form (NNF) if the negation symbol appears only in literals.
- Example:
 - $\neg p \land \neg q$, $(\neg p \land \neg q) \lor r$ are in NNF.
 - $\neg (p \lor (\neg p \land q))$ is not in NNF.

Obtaining NNF

- Use the following relations to get rid of \rightarrow , \oplus , \leftrightarrow , \uparrow , and \downarrow :
 - $A \rightarrow B \equiv \neg A \vee B$
 - $A \oplus B \equiv (A \land \neg B) \lor (\neg A \land B)$
 - $A \leftrightarrow B \equiv (\neg A \lor B) \land (\neg B \lor A)$
 - A \uparrow B $\equiv \neg$ (A \land B)
 - A \downarrow B $\equiv \neg$ (A \vee B)
- Use De Morgan's Laws to push ¬ down:
 - \neg (A \wedge B) \equiv \neg A \vee \neg B
 - \neg (A \lor B) \equiv \neg A $\land \neg$ B

11

Obtaining NNF

- Simplify formulas with the following axioms:
 - $p \vee 1 \equiv 1$
 - $p \wedge 0 \equiv 0$
 - $p \lor 0 \equiv p$
 - $p \wedge 1 \equiv p$
 - $p \lor p \equiv p$
 - $p \wedge p \equiv p$
 - $p \lor q \equiv q \lor p$
 - $p \wedge q \equiv q \wedge p$

- $\bullet \neg 0 \equiv 1$
- $\neg 1 \equiv 0$
- $\neg \neg p \equiv p$
- $p \lor \neg p \equiv 1$
- $p \land \neg p \equiv 0$
- $(p \lor q) \lor r \equiv p \lor (q \lor r)$
- $(p \land q) \land r \equiv p \land (q \land r)$

Conjunctive Normal Form (CNF)

- A disjunctions of literals is called a *clause*.
 - Duplicate literals are removed from a clause
- A CNF is a conjunction of disjunctions of literals (product of sums (POS))
 - Duplicate clauses are removed from CNF

Example:

- $\neg p \land \neg q$, $\neg p \lor \neg q \lor r$ are in CNF.
- $(p \land \neg q) \lor (\neg p \land q)$ is not in CNF.

13

Obtaining CNF

- At first, convert the formula in NNF.
- Use the distribution law to push v down:
 - $X \vee (A \wedge B) \equiv (X \vee A) \wedge (X \vee B)$
 - $(A \wedge B) \vee X \equiv (X \vee A) \wedge (X \vee B)$
- · Simplify formulas as we do for NNF
- **Theorem**: Every formula has an equivalent formula in CNF.

Disjunctive Normal Form (DNF)

- A conjunctions of literals is called a minterm (or product).
 - Duplicate literals are removed from a minterm
- A DNF is a disjunction of conjunctions of literals (sum of products (SOP))
 - Duplicate minterms are removed from DNF

Example:

- $\neg p \land \neg q$, $(p \land \neg q) \lor (\neg p \land q)$ are in DNF.
- $(\neg p \lor \neg q) \land r$ is not in DNF.

15

Obtaining DNF

- At first, convert the formula in NNF.
- Use the distribution law to push \vee down:
 - $X \wedge (A \vee B) \equiv (X \wedge A) \vee (X \wedge B)$
 - $(A \lor B) \land X \equiv (X \land A) \lor (X \land B)$
- · Simplify formulas as we do for NNF
- **Theorem**: Every formula has an equivalent formula in DNF.

Full CNF and Full DNF

- A CNF is a *full CNF* if every clause contains every variable exactly once.
 - If a clause C does not contain y, replace C by

$$(C \vee y) \wedge (C \vee \neg y)$$

- A DNF is a *full DNF* if every minterm contains every variable exactly once.
 - If a midterm A does not contain y, replace A by

$$(A \land y) \lor (A \land \neg y)$$

17

Normal Form vs Canonical Form

- A canonical form is a normal form which has a unique representation for all equivalent formulas.
- Advantage: Easy to tell equivalent formulas.
- To show A is valid, check if A's canonical form is 1.
- CNF and DNF are not canonical forms:

$$(p \lor r) \land (q \lor \neg r) \equiv (p \lor q) \land (p \lor r) \land (q \lor \neg r)$$
$$(p \land r) \lor (q \land \neg r) \equiv (p \land q) \lor (p \land r) \lor (q \land \neg r)$$

• Full CNF and Full DNF are canonical forms (up to the associativity and commutativity of ∧ and ∨).

Get Full DNF & CNF from Truth Table

Truth table is popular for defining Boolean functions.

a b c	out	minterms	clauses
0 0 0	0	m _o =a b c	M_0 =a+b+c
0 0 1	1	m ₁ =a b c	$M_1=a+b+\overline{c}$
0 1 0	0	$m_2 = a b c$	$M_2=a+\overline{b}+c$
0 1 1	1	m ₃ =a b c	$M_3 = a + \overline{b} + \overline{c}$
100	0	m ₄ =a <u>Б c</u>	$M_4 = \overline{a} + b + c$
101	1	m ₅ =a b c	$M_5 = \overline{a} + b + \overline{c}$
1 1 0	0	m ₆ =a b c	$M_6 = \overline{a} + \overline{b} + c$
111	1	m ₇ =a b c	$M_7 = \overline{a} + \overline{b} + \overline{c}$

- *i* in m_i and M_i is the decimal value of abc (in binary)
- $\neg m_i \equiv M_i$
- DNF $f_1 = \overline{a} \, \overline{b} \, c + \overline{a} \, b \, c + a \, \overline{b} \, c = m_1 + m_3 + m_5 + m_7$
- $\mathsf{CNF} f_2 = (\mathsf{a} + \mathsf{b} + \mathsf{c})(\mathsf{a} + \mathsf{b} + \mathsf{c})(\mathsf{a} + \mathsf{b} + \mathsf{c})(\mathsf{a} + \mathsf{b} + \mathsf{c}) = \mathsf{M}_0 \mathsf{M}_2 \mathsf{M}_4 \mathsf{M}_6$

19

Get Full DNF & CNF from Truth Table

- DNF $f_1 = \overline{a} \, \overline{b} \, c + \overline{a} \, b \, c + a \, \overline{b} \, c = m_1 + m_3 + m_5 + m_7$
- CNF f_2 = (a+b+c)(a+b+c)(a+b+c)(a+b+c) = $M_0M_2M_4M_6$
 - Do f_1 and f_2 define the same function?
 - · YES.
 - $\neg f_1 = \mathbf{m}_0 + \mathbf{m}_2 + \mathbf{m}_4 + \mathbf{m}_6$
 - (0, 0, 0), (0, 1, 0), (1, 0, 0), (1, 1, 0) are models of $\neg f_1$; not models of f_1 .
 - $f_1 = \neg \neg f_1 = \neg (m_0 + m_2 + m_4 + m_6) =$ = $M_0 M_2 M_4 M_6 = f_2$ because $\neg m_i \equiv M_i$

Method 2: Obtain Full CNF

- Construct a truth table for the formula.
- Use each non-model interpretation in the table to construct a clause.
 - If a variable is true, use the negative
 literal of this variable in the clause
 - If a variable is false, use the variable in the clause
- Connect the clauses with ∧'s.

21

How to find Full CNF of $(p \lor q) \rightarrow \neg r$

р	q	r	(p ∨ q)	¬r	$(p \lor q) \rightarrow \neg r$
1	1	1	1	0	0
1	1	0	1	1	1
1	0	1	1	0	0
1	0	0	1	1	1
0	1	1	1	0	0
0	1	0	1	1	1
0	0	1	0	0	1
0	0	0	0	1	1

There are 3 no-model interpretations: 3 clauses.

$$(\neg p \vee \neg q \vee \neg r) \wedge (\neg p \vee q \vee \neg r) \wedge (p \vee \neg q \vee \neg r)$$

Method 2: Obtain Full DNF

- Construct a truth table for the formula.
- Use each model in the truth table to construct a minterm
 - If the variable is true, use the variable in the minterm
 - If a variable is false, use the negative literal of the variable in the minterm
- Connect the minterms with √'s.

23

How to find Full DNF of $(p \lor q) \rightarrow \neg r$

р	q	r	(p ∨ q)		(p ∨ q)→¬r
1	1	1	1	0	0
1	1	0	1	1	1
1	0	1	1	0	0
1	0	0	1	1	1
0	1	1	1	0	0
0	1	0	1	1	1
0	0	1	0	0	1
0	0	0	0	1	1

There are 5 models, so there are 5 minterms

$$(p \lor q) \rightarrow \neg r \equiv (p \land q \land \neg r) \lor (p \land \neg q \land \neg r) \lor (\neg p \land q \land \neg r) \lor (\neg p \land \neg q \land \neg r)$$

Dual of NNFs

- Dual of a NNF formula is another formula where ∧
 is replaced by ∨ and ∨ is replaced by ∧ and the
 sign of literals are changed.
 - dual(p) = $\neg p$ if p is a positive literal
 - dual($\neg p$) = p if p is a negative literal
 - $dual(A \lor B) = dual(A) \land dual(B)$
 - dual(A ∧ B) = dual(A) ∨ dual(B)
- Example: dual $(\neg p \lor \neg q \lor r) = p \land q \land \neg r$
- Theorem: If A is in NNF, then dual(A) is in NNF and dual(A) = ¬ A.
- Proof: Induction on the structure of A and use DeMorgan's laws.

25

Obtain Full DNF from Full CNF

- If A is in CNF, then dual(A) is in DNF and vice versa.
- If we have a method to obtain full CNF, we may obtain the full DNF of A from the full CNF of

 A.
- If B is a full CNF equivalent to ¬ A, then dual(B) is a full DNF of A.
- If B is a full DNF equivalent to ¬ A, then dual(B) is a full CNF of A.

Binary Decision Diagrams (BDD)

- Compact data structure for propositional logic, using only ite, 0, and 1.
 - can represents sets of objects (states) encoded as Boolean functions
- Canonical Form
 - reduced ordered BDDs (ROBDD) are canonical
 - Important tool for circuit verification
 - Can display as a directed graph.

27

27

Binary Decision Diagrams (BDD)

- Let + denote ∨, x' denote ¬x, product denote ∧ (often omitted)
- Let f_x and $f_{x'}$ denote $f[x \leftarrow 1]$ and $f[x \leftarrow 0]$
- Based on recursive Shannon expansion

$$f = x \land f_x \lor \neg x \land f_{\neg x} = x f_x + x' f_{x'}$$

- Equivalently, $f = ite(x, f_x, f_{x'})$
- ite(x, y, z) stands for "if x then y else z"

Shannon Expansion \rightarrow BDD

•
$$g = f_{a'} = f(a=0) = bc$$

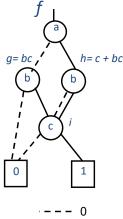
•
$$h = f_a = f(a=1) = c + bc$$

•
$$g_{b'} = (bc)_{|b=0} = 0$$

•
$$g_b = (bc)_{|b=1} = c$$

•
$$h_{b}$$
 = $(c+bc)_{|b=0}$ = c

•
$$h_b = (c+bc)_{|b=1} = c$$

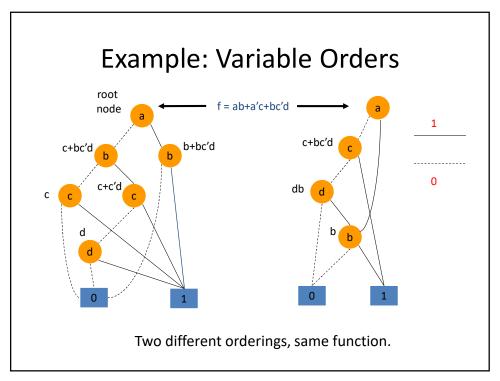


29

BDDs

- Directed acyclic graph (DAG): one root node, two terminals 0, 1; each node has two children, and a variable.
- Reduced:
 - any node with two identical children is removed
 - two nodes with isomorphic BDD's are merged
- Ordered:
 - Splitting variables always follow the same order along all paths

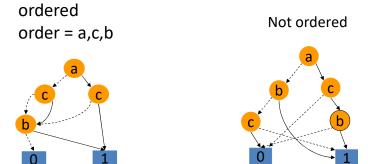
$$x_{i_1} > x_{i_2} > x_{i_3} > ... > x_{i_n}$$



31

OBDD

Ordered BDD (OBDD): Input variables are ordered - each path from root to sink visits nodes with labels (variables) in descending order.



ROBDD

Reduced Ordered BDD (ROBDD)

Reduction rules:

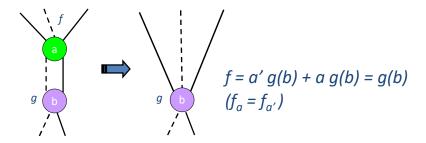
- 1. if the two children of a node are the same, the node is eliminated: replace ite(v, f, f) by f.
- 2. two nodes have isomorphic graphs => replace by one by the other

These two rules make ROBDD as a canonical form, so that each node represents a distinct logic function.

33

BDD Reduction Rules -1

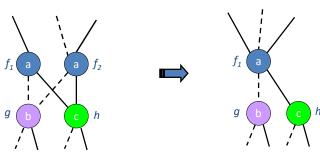
1. Eliminate *redundant* nodes (with both edges pointing to same node)



$$f = ite(a, g, g) \Rightarrow f = g$$

BDD Reduction Rules -2

- 2. Merge duplicate nodes (isomorphic subgraphs)
 - Nodes must be unique



 $f_1 = a' g(b) + a h(c) = f_2$

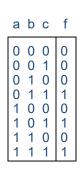
 $f_1 = f_2$

 $f_1 = ite(a, h, g) = f_2 \Rightarrow f_1 = f_2$

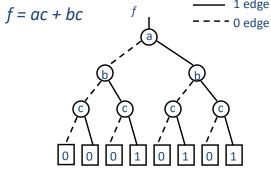
35

BDD Construction from Truth Table

 A slow method for getting a Reduced Ordered BDD



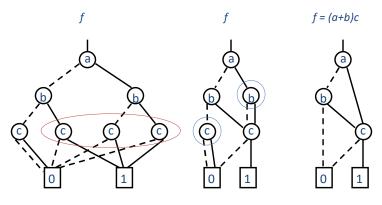
Truth table



Decision tree

36

BDD Construction - cont'd



1. Merge terminal nodes

2. Merge duplicate nodes

3. Remove redundant nodes

37

37

Recursive Construction of ITE

```
Algorithm ROBDD (A)

// input: formula A

// output: the ROBDD node of A

// a hash table for triples (v, x, y).

if (vars(A) = {}) return simplify(A)

v := TOP_VARIABLE(vars(A)) // top variable

x := ROBDD(f[v \leftarrow 1]) // recursive calls

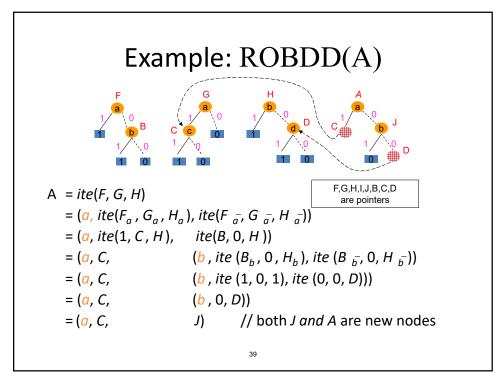
y := ROBDD(f[v \leftarrow 0])

if (x = y) return x // reduction

p := LOOKUP_HASH_TABLE(v, x, y)

if (p \neq null) return p // sharing

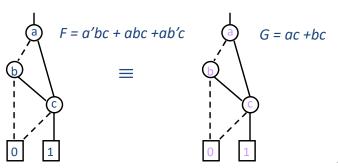
return SAVE_CREATE_NODE(v, x, y)
```

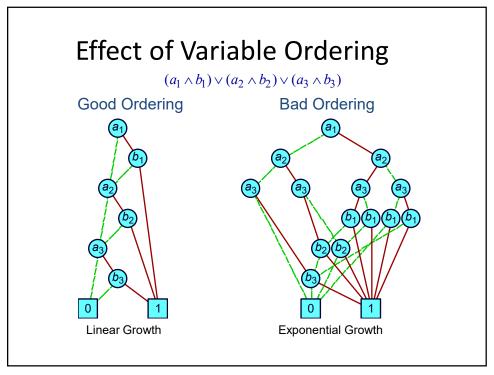


39

Application to Verification

- Equivalence Checking of combinational circuits
- Canonicity property of OBDDs:
 - if F and G are equivalent, their OBDDs are identical (for the same ordering of variables)





41

Static Variable Ordering

- Variable ordering is computed up-front based on the problem structure
- Works very well for many combinational functions that come from circuits
 - general scheme: control variables first
- · Work bad for unstructured problems
 - e.g., using BDDs to represent arbitrary sets
- Lots of research in ordering algorithms
 - simulated annealing, genetic algorithms
 - give better results but extremely costly

42