Logic in computer Science

Mathematical Logic

1

Mathematical Logic

As a continuation of symbolic logic in late 19th to mid 20th Century

Four important fields:

- Set theory,
- Model theory,
- Proof theory, and
- Computability theory.

Set Theory

- A set is a structure, representing an <u>unordered</u> collection of zero or more <u>distinct</u> objects.
- Set theory deals with operations between, relations among, and statements about sets
- Set builder notation: For any property P(x) over any domain, $\{x \mid P(x)\}$ is the set of all x such that P(x).

e.g., $\{x \mid x \text{ is an integer where } x>0 \text{ and } x<5\}$

3

Basic Properties of Sets

• Sets are inherently *unordered*:

$$- \{a, b, c\} = \{a, c, b\} = \{b, a, c\} = ... = \{c, b, a\}.$$

- All elements are <u>distinct</u> (unequal); multiple listings make no difference!
 - $\{a, b, c\} = \{a, a, b, a, b, c, c, c, c\}.$
- The empty set $\emptyset = \{\} = \{x \mid \mathbf{False}\}$
- $1 \neq \{1\} \neq \{\{1\}\}\}$!!!
- Cardinality: |S| is a measure of how many different elements S has. E.g., $|\emptyset| = 0$,
- $|\{1,2,3\}| = 3, |\{\{1,2,3\}\}| = 1$

The Power Set Operation

- The *power set* P(S) of a set S is the set of all subsets of S. P(S) = $\{x \mid x \subseteq S\}$.
- $E.g. P(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}.$
- Sometimes P(S) is written 2^S, because
- $|P(S)| = 2^{|S|}$ if S is finite
- |P(S)| > |S|, S is finite or not.
- There are different sizes of infinite sets!

5

5

Basic Set Relations

- *Membership*: $x \in S$ means that object x is an $\in lement$ of set S.
 - $-x \notin S := \neg(x \in S)$ "x is not in S"
- **Equality**: S=T iff $(\forall x: x \in S \leftrightarrow x \in T)$
- Subset: $S \subseteq T$ iff $\forall x (x \in S \rightarrow x \in T)$
 - $-\varnothing\subseteq S$, $S\subseteq S$.
- **Proper subset**: $S \subset T$ iff $S \subseteq T$ and $S \neq T$.
- **Union**: $A \cup B = \{ x \mid x \in A \lor x \in B \}.$
- Intersection: $A \cap B = \{x \mid x \in A \land x \in B\}$.
- Subtraction: $A B = \{ x \mid x \in A \land x \notin B \}$
- **Complement**: A = U A, where U is the universal set.

6

Ordered *n*-tuples

- For $n \in \mathbb{N}$, the set of natural numbers, an ordered n-tuple or a <u>sequence of length n</u> is written $(a_1, a_2, ..., a_n)$. The first element is a_1 , etc.
- These are like sets, except that duplicates matter, and the order makes a difference.
- Note $(1, 2) \neq (2, 1) \neq (2, 1, 1)$.
- Empty sequence, singlets, pairs, triples, quadruples, quintuples, ..., *n*-tuples.

/

Cartesian Products of Sets

Cartesian Products of Sets

- For sets A, B, their Cartesian product $A \times B := \{ (a, b) \mid a \in A \text{ and } b \in B \}.$
- E.g. $\{a, b\} \times \{1, 2\} = \{ (a,1), (a,2), (b,1), (b,2) \}$
- For finite A, B, $|A \times B| = |A| |B|$.
- The Cartesian product is **not** commutative: $A \times B \neq B \times A$ in general.
- Extends to $A_1 \times A_2 \times ... \times A_n$.
- $A^n = A \times A \times ... \times A$.

8

Q

Set Identities

- Identity: $A \cup \emptyset = A \quad A \cap U = A$
- Domination: $A \cup U = U$ $A \cap \emptyset = \emptyset$
- Idempotent: $A \cup A = A = A \cap A$
- Double complement: $(\overline{A}) = A$
- Commutative: $A \cup B = B \cup A$ $A \cap B = B \cap A$
- Associative: $A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$
- DeMorgan's Law: $\overline{A \cup B} = \overline{A} \cap \overline{B}$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

9

Generalized Union & Intersection

• *n*-ary union:

$$A \cup A_2 \cup ... \cup A_n = ((...((A_1 \cup A_2) \cup ...) \cup A_n))$$

• *n*-ary intersection:

$$A \cap A_2 \cap ... \cap A_n = ((...((A_1 \cap A_2) \cap ...) \cap A_n))$$

• "Big U" and "Big Arch" notation:

• For infinite sets of sets:

Relations and Functions

- A (binary) relation R is a subset of A × B, where A, B are sets.
- For $a \in A$ and $b \in B$, "a R b" is true iff $(a, b) \in R$.
- Example: Let A be the students and B be the courses, relation R
 A × B represents what students take what courses.
- A function f: A → B defines a relation R ⊆ A × B: (a, b) ∈
 R iff f(a) = b. Thus, every function is a relation.
- Not all relations are functions: A relation R ⊆ A × B is a function if for any a ∈ A and b, c ∈ B, if (a, b) ∈ R and (a, c) ∈ R, then b = c.

11

11

Properties of Functions

- A function f: is a relation $R \subseteq A \times B$.
- A is the domain of f; B is the range of f.
- f is said to be total if f(x) is defined for any x ∈ A;
 otherwise, f is said to be partial.
- f is *injective* if f is total and $f(x_1) \neq f(x_2)$ when $x_1 \neq x_2$.
- f is surjective (a surjection) if for every y ∈ B, there exists x ∈ A such that f(x) = y.
- f is bijective (or a bijection, one-to-one correspondence) if f is both injective and surjective.
- f is *bijective* iff f has an inverse $f^1: B \rightarrow A$

$$f(x) = y \text{ iff } f^{-1}(y) = x.$$

Russell's Paradox

 Let T be the set that contains all sets which does not contain itself:

$$T = \{ S \mid S \notin S \}$$

Suppose T exists. Check to see $T \in T$, or $T \notin T$

- 1. If $T \in T$, by definition of T, $T \notin T$, a contradiction.
- 2. If $T \notin T$, by definition of T, $T \in T$, a contradiction.
- It caused a crisis in development of Set Theory.
- Cantor has found a solution: Sets should be hierarchical.
- The concept of "a set contains itself" is invalid.

13

How to Compare |S| and |T|?

It is easy when S is finite. How about infinite S?

 $N = \{0, 1, 2, 3, ...\}$ the set of natural numbers

 $\mathbf{E} = \{0, 2, 4, 6, ...\}$ the set of even natural numbers

|E| < |N|? $E \subset N$, E is a proper subset of N.

 $f : \mathbf{E} \to \mathbf{N}$, f(x) = x, is injective, but not surjective.

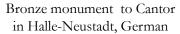
 $g: \mathbf{N} \rightarrow \mathbf{E}, g(\mathbf{x}) = 2\mathbf{x}$, is bijective (injective and surjective):

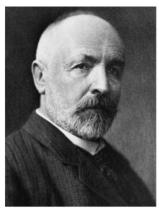
E: 0 2 4 6 8 10 12 14 16 ...

N: 0 1 2 3 4 5 6 7 8 ... So |E| = |N|

Cantor's Solution

|S| = |T| if there is a bijection between S and T





Georg Cantor 1845 – 1918

15

Countable Sets

A set S is *countable* if there exists an injective total function $f: S \to N$.

S is *countably infinite* if S is both countable and infinite.

Claim: Every finite set is countable.

Proof: Let $S = \{ a_1, a_2, ..., a_n \}$.

Define $f(a_i) = i$, then $f: S \to N$ is injective. So S is countable.

Claim: Every subset S of $N = \{0, 1, 2, 3, ...\}$ is countable.

Proof: Define f(x) = x, then $f: S \rightarrow N$ is injective.

 $E = \{0, 2, 4, 6, ...\}$, the set of even natural numbers, is countable.

In fact, E is countably infinite.

17

Countable Sets

Claim: The set **Z** of integers is countably infinite.

$$Z = \{\dots -3, -2, -1, 0, 1, 2, 3, \dots\}$$

Proof: Define $f(n) = if 0 \le n$ then 2n else -1 - 2n.

Then $f: \mathbf{Z} \to \mathbf{N}$ is bijective: positive number to even numbers; negative numbers to odd numbers.

Z: 0 -1 1 -2 2 -3 3 -4 4 ...

N: 0 1 2 3 4 5 6 7 8...

Claim: The set \mathbb{N}^2 of pairs of natural numbers is countably infinite.

$$N2 = {(0,0), (0,1), (1,0), (1,1), (0,2), ...}$$

Proof: Define g(k) = k(k+1)/2 (sum of first k positive integers), and f(i, j) = g(i + j) + j.

Then $f: \mathbb{N}^2 \to \mathbb{N}$ is bijective.

$$k = 0$$
 1 2 3 4 5 6
 $g(k) = 0$ 1 3 6 10 15 21
 $f(0,0) = 0$, $f(1,0) = 1$,
 $f(0,1) = 2$, $f(2,0) = 3$, ...

i\j	0	1	2	3	4	5
0	0	2	5	9	14	20
1	1	4	8	13	19	26
2	3	7	12	18	25	33
3	6	11	17	24	32	41
4	10	16	23	31	40	49

19

Countable Sets

Claim: S is countably infinite iff there is a bijection between S and **N**.

Proof: If there is a bijection between S and **N**, then S must be countable and infinite.

If S is countable, there is injective function f: $S \rightarrow N$. Sort S by f, that is, let

$$S = \{ s_0, s_1, s_2, ..., s_k, ... \}$$

such that $i \le j$ iff $f(s_i) \le f(s_i)$.

Define g: $\mathbf{N} \to S$, g(i) = s_i, then g is a bijection between S and \mathbf{N} .

Claim: Any subset of a countable set is countable. Proof is left as an exercise.

Claim: The set **R** of rational numbers is countable.

Proof: If we view each rational m/n as a pair (m, n), then **R** is a subset of \mathbb{N}^2 . Since \mathbb{N}^2 is countable, so is **R**.

21

Countable Sets

Claim: The set $\{0, 1\}^*$ of all binary strings (of finite length) is countably infinite.

```
\{0, 1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, \dots\}
```

where shorter strings go first; then smaller values go first.

Proof: (easy) Define an injection h: $\{0, 1\}^* \to \mathbb{N}$: $h(\varepsilon) = 0$, h(s) replaces every 0 by 2 and leaves 1 intact. Then h: $\{0, 1\}^* \to \mathbb{N}$ is injective:

```
\{0, 1\}*: \epsilon, 0, 1, 00, 01, 10, 11, 000, 001, ... \mathbf{N}: 0, 2, 1, 22, 21, 12, 11, 222, 221, ...
```

Claim: The set $\{0, 1\}^*$ of all binary strings (of finite length) is countably infinite.

Proof: (harder) Define a bijection $f: \{0, 1\}^* \to \mathbb{N}$:

For s in $\{0, 1\}^*$, there are $1+2+2^2+...+2^{n-1}=2^n-1$ strings shorter than s, where n = |s|, the length of s.

Let v(s) be the decimal value of s, then there are v(s) strings of length n before s in the listing.

So the position of s in the list is $2^n + v(s)$.

Define $f(s) = 2^{|s|} + v(s) - 1$. Then f is a bijection:

 $\{0, 1\}^*$: ϵ , 0, 1, 00, 01, 10, 11, 000, 001, ...

N: 0 1 2 3 4 5 6 7 8 ...

23

Countable Sets

A set S is *countably infinite* iff there is a bijection between S to N, the natural numbers.

- N is countable.
- Subsets of countable sets are countable.
- The set of even natural numbers is countable.
- The set of all binary strings is countable.
- The union of two countable sets is countable.
- The Cartesian product of two countable sets is countable.
- Are there any uncountable sets?

There are infinite many uncountable sets.

- R: the set of real numbers.
- R₁: the set of real numbers between 0 and 1.
- B: the set of infinite-length of binary strings
- F: the Boolean functions over N.
- $\mathcal{F}(N)$: the power set of natural numbers.
- £: the set of all formal languages.
- · The power set of any infinite set.

The proof is based on Cantor's Diagonalization Method.

25

Uncountable Sets

3, the set of infinite-length of binary strings, is not countable.

- If \$\mathcal{B}\$ is countable, then there is a bijection between \$\mathcal{B}\$ and \$N\$.
- Let \$\mathcal{B}\$ = {s₁, s₂, ..., s_i, ...}, such that s_i maps to i.
- Construct the string s such that the jth symbol of s is the complement of the jth symbol of string s_j.
- Then s is a binary string not in B, a contradiction.

s = 10111010011...

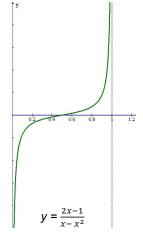
If $s \in \mathcal{B}$, then $s = s_i$ for some j: s and s_i differ on the jth symbol

- 1. \mathcal{B} , the set of infinite-length of binary strings.
- **2.** R_1 : the set of real numbers between 0 and 1.
- It suffices to show that there is a bijection between R₁ and B.
- Define f: B→R₁, where f(s) = 0.s, a real in binary.
- E.g., s = 0001000110..., f(s) = 0.0001000110...
- It is easy to check that f is injective and surjective, or f has an inverse.

27

Uncountable Sets

- 1. 3, the set of infinite-length of binary strings.
- **2.** R_1 : the set of real numbers between 0 and 1.
- 3. R: the set of real numbers.
- It suffices to show that there is a bijection between R₁ and R.
- Define f: $R_1 \to R$, $f(x) = (2x-1)/(x-x^2)$.
- It is easy to check that f is injective and surjective.



- 1. \mathcal{B} , the set of infinite-length of binary strings.
- 2. R₁: the set of real numbers between 0 and 1.
- 3. R: the set of real numbers.
- 4. \mathcal{F} : the Boolean functions over N.
- It suffices to show that there is a bijection between $\mathcal{F} = \{f | f : N \rightarrow \{0, 1\}\}\$ and \mathcal{B} .
- Define $g: \mathcal{F} \to \mathcal{B}$, g(f) = f(0)f(1)...f(i)..., an infinite binary string.
- It is easy to check that g is injective and surjective.

29

Uncountable Sets

- 1. \mathcal{B} , the set of infinite-length of binary strings.
- 2. R₁: the set of real numbers between 0 and 1.
- 3. R: the set of real numbers.
- 4. \mathcal{F} : the Boolean functions over N.
- *5.* $\mathcal{P}(N)$: the power set of natural numbers.
- It suffices to show that there is a bijection between $\mathcal{F} = \{f | f : N \to \{0, 1\}\}\$ and $\mathcal{P}(N)$.
- Define $g: \mathcal{F} \to N, g(f) = \{ i | f(i) = 1, i \in N \}.$
- It is easy to check that g is injective and surjective.
- So there is no bijection between N and $\mathcal{P}(N)$.

Cantor's Theorem: $|A| < |\mathcal{P}(A)|$ for any set A.

- **Proof** by contradiction: If $|A| = |\mathcal{P}(A)|$, there is a bijection f between A and $\mathcal{P}(A)$.
- Define S ={ a∈A | a ∉ f(a) } ⊆ A.
- Since S ∈ P(A), there exists b ∈ A such that f(x)
 = S. Only two possibilities: b ∈ S or b ∉ S.
- 1. If $b \in S$, by definition of S, $b \notin f(b) = S$.
- 2. If $b \notin S$, by definition of S, $b \in f(b) = S$.
- Both cases have a contradiction, f can exist.
- It cannot be $|A| > |\mathcal{P}(A)|$ because $g(a) = \{a\}$ is an injection from A to $\mathcal{P}(A)$.

31

No Set of All Sets

Cantor's theorem implies that there is no such thing as the "set of all sets".

Proof:

- Suppose A were the set of all sets.
- Since every element of $\mathcal{P}(A)$ is a set, so $\mathcal{P}(A) \subseteq A$.
- Thus $|\mathcal{P}(A)| \le |A|$, a contradiction to Cantor's theorem.

Cardinality Numbers

- Cantor chose the symbol $\aleph_0 = |N|$. \aleph_0 is read as aleph-null, after the first letter of the Hebrew alphabet.
- The cardinality of the reals is often denoted by \aleph_1 , or c for the continuum of real numbers.

Set	Description	Cardinality
Natural numbers	1, 2, 3, 4, 5,	ℵ₀
Integers	, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5,	ℵ ₀
Rational numbers	pair of natural numbers	ℵ₀
Real numbers	All decimals	С

33

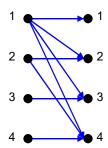
Infinity of infinities

Cantor's theorem implies that there are infinitely many infinite cardinal numbers, and that there is no largest cardinal number.

$$\mathfrak{R}_{0} = |N|
\mathfrak{R}_{1} = |\mathcal{P}(N)| = 2^{\aleph_{0}} > \mathfrak{R}_{0}
\mathfrak{R}_{2} = |\mathcal{P}(\mathcal{P}(N))| = 2^{\aleph_{1}} > \mathfrak{R}_{1}
\mathfrak{R}_{3} = |\mathcal{P}(\mathcal{P}(\mathcal{P}(N)))| = 2^{\aleph_{2}} > \mathfrak{R}_{2}$$

Relations on a set

- A relation R on the set S is a relation from S to S.
- Every relation R on S is equivalent to a digraph G = (S, R).
- Example: Let S be the set { 1, 2, 3, 4 }
 - Which pairs are in the relation $R = \{ (a,b) \mid a \text{ divides } b \}$
 - $-R = \{ (1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4) \}$



R	1	2	3	4
1	Х		Χ	Χ
2		Χ		Χ
3			Χ	
4				Χ

35

35

More Examples

- Consider some relations on the set **Z** of integers.
- Are the following ordered pairs in the relation?

•
$$R_3 = \{ (a, b) \mid a = |b| \}$$
 X X

•
$$R_4 = \{ (a, b) \mid a = b \}$$
 X

•
$$R_5 = \{ (a, b) \mid a = b+1 \}$$

Relation Properties

Six properties of relations: for any a, b, $c \in A$

• Reflexive: $(a, a) \in R$

• Irreflexive: (a, a) ∉R

• Symmetric: If $(a, b) \in R$, then $(b, a) \in R$

• Asymmetric: If $(a, b) \in R$, then $(b, a) \in R$

• Antisymmetric: If $(a, b) \in R$, $(b, a) \in R$, then a = b

• Transitive: If $(a, b) \in R$, $(b, c) \in R$, then $(a, c) \in R$

37

37

Notes on symmetric relations

- A relation can be neither symmetric or asymmetric
 - $-R = \{ (a,b) \mid a = |b| \}$
 - This is not symmetric
 - -4 is not related to itself
 - This is not asymmetric
 - 4 is related to itself
 - It is antisymmetric

Relations on numbers summary

	=	<	>	≤	≥
Reflexive	Х			Х	Х
Irreflexive		Х	Х		
Symmetric	Х				
Asymmetric		Х	Х		
Antisymmetric	Х			Х	Х
Transitive	Х	Х	Х	Х	Х

39

39

Composition of Relations

- Let R be a relation from A to B, and S be a relation from B to C
- The composite of R and S, denoted by $S \circ R$, consists of the ordered pairs (a, c), if $(a, b) \in R$, and $(b, c) \in S$, where $a \in A$, $b \in B$, and $c \in C$
- Note that S comes first when writing the composition!
- Example: Let M be the relation "is mother of" and F be the relation "is father of"
- What is *M* ∘ *F*?
 - If (a,b) ∈ F, then a is the father of b
 - If (b,c) ∈ M, then b is the mother of c
 - Thus, M ∘ F denotes the relation "maternal grandfather"

Composition of Relations on a Set

Given relation R on S:

- $R^1 = R$
- $R^{n+1} = R^{n_0} R$
 - Example: $R^2 = R \circ R$, $R^3 = R \circ R \circ R$, etc.
- The meaning of R^k in graph G = (S, R): $(a, b) \in R^k$ iff there is a path of length k from a to b.
- Let R^0 denote $\{(x,x) \mid x \in S\}$.
- R^0 is the set of all loops in G = (S, R).
- The reflexive closure of R is $R \cup R^0$

41

41

Composition of Relations on a Set

• The transitive closure of R is

$$R^+ = R^1 \cup R^2 \cup ... \cup R^n \cup ...$$

• The reflexive and transitive closure of R is

$$R^* = R^+ \cup R^0 = R^0 \cup R^1 \cup \dots \cup R^n \cup \dots$$

- Example: $S = \{1, 2, 3\}$ and $R = \{(1, 1), (1, 2), (2, 3)\}$
 - $-R^{+}=\{(1, 1), (1, 2), (2, 3), (1, 3)\}$
 - $-\ R^* = \{(1,\,1),\,(1,\,2),\,(2,\,3),\,(1,\,3),\,(2,\,2),\,(3,\,3)\}$

Equivalence Relations

- Equivalence relations are used to relate objects that are similar in some way.
- A relation *R* on a set A is an equivalence relation if it is reflexive, symmetric, and transitive.
- Two elements that are related by an equivalence relation R are called **equivalent**.
- The best representation of an equivalence relation is Sets: equivalent items are in the same set.

43

Equivalence Relation: Example

- Suppose $f: A \rightarrow B$ is a function and A is non-empty.
- Let R be the relation on A: R(x,y) is true iff f(x) = f(y)
- Show that R is an equivalence relation on A
- Reflexivity: f(x) = f(x)
 - True, as given the same input, a function always produces the same output
- Symmetry: if f(x) = f(y) then f(y) = f(x)
 - True, by the definition of equality
- Transitivity: if f(x) = f(y) and f(y) = f(z) then f(x) = f(z)
 - True, by the definition of equality

Equivalence Classes

- Let R be an equivalence relation on a set A.
 The set of all elements that are related to an element a of A is called the equivalence class of a.
- The equivalence class of a with respect to R is denoted by [a]_R
- When only one relation is under consideration, the subscript is often deleted, and [a] is used to denote the equivalence class
- Note that these classes are disjoint!
 - As the equivalence relation is symmetric and transitive.

45

Example and Partition

- Consider $R = \{ (a,b) \mid a \mod 2 = b \mod 2 \}$
- The even numbers form an equivalence class
 As do the odd numbers
- The equivalence class for the even numbers is denoted by [2] (or [4], or [784], etc.)
 - $-[0] = \{ ..., -4, -2, 0, 2, 4, ... \}$
 - 0 is a *representative* of its equivalence class
- There are only 2 equivalence classes formed by this equivalence relation, and they form a partition of the integers
- A partition of a set S is a collection of non empty disjoint subsets of S whose union is S

Partitions

- Consider the relation R = { (a,b) | a mod 2 = b mod 2 }
- This splits the integers into two equivalence classes: even numbers and odd numbers
- Those two sets together form a partition of the integers
- Formally, a <u>partition of a set S</u> is a collection of nonempty disjoint subsets of S whose union is S
- In this example, the partition is { [0], [1] }
 Or { {..., -3, -1, 1, 3, ...}, {..., -4, -2, 0, 2, 4, ...} }

47

47

Mathematical Logic

Four important fields:

- · Set theory,
- Model theory,
- · Proof theory, and
- Computability theory.

Model Theory

- Model theory is the study of mathematical structures (e.g. groups, fields, algebras, graphs, logics) in a formal language.
- Every formal language has its syntax and semantics.
- Models are a semantic structure associated with syntactic structures in a formal language.
- Theories are then introduced based on models.

49

Syntax and Semantics

- The syntax of a formal language specifies how various components of the language, such as symbols, words, and sentences, are defined.
- The semantics of a language specifies the meaning of various components of the language.
 - Meaning can be informal and formal.
 - Formal meanings can be checked by procedures or proofs using syntactic components.

Logic as a Language

- Syntax:
 - Symbols: What symbols are eligible
 - Grammars: how well-formed sentences (formulas) are formed
- Semantics:
 - Meaning of symbols
 - Truthiness of formulas
- Inference Systems
 - How to prove theorems (true formulas if the premises are true) from the given premises.

51

Models and Abstract Algebras

- In model theory, a theory is defined by a set of sentences and a model is an interpretation that satisfies the sentences of that theory.
- Abstract algebras are often used as models:
 model theory = abstract algebra + logic
- Abstract algebra (or universal algebra) is a broad field of mathematics, concerned with sets of abstract objects associated various operations and properties.

Boolean Algebra

- Most relevant to the logic of this course
- Almost a synonym of propositional logic (chapter 2)
- In Boolean algebra, 0 is used for false and 1 for true, + for disjunction, · for conjunction, It is thus a formalism for describing logical operations in the same way that elementary algebra describes numerical operations, such as addition and multiplication, like most other algebras.

53

Mathematical Logic

Four important fields:

- · Set theory,
- Model theory,
- · Proof theory, and
- Computability theory.

Proof Theory

- Proof Theory is a major branch of mathematical logic that represents proofs as formal mathematical objects, facilitating their analysis by mathematical techniques.
- In Proof Theory, a theory is defined by a set of formulas (sentences) called axioms.
- Assuming the axioms are true, the formula proved to be true by various proof methods are called theorems.

55

Axioms and Theorems: Example

- **Example**: Assume \bot is false (0), \top is true (1), \neg is negation.
- The axioms are $\neg \bot = T$, $\neg T = \bot$.
- Prove $\neg \neg p = p$ is a theorem by case analysis:
- Case 1: $p = \bot$. $\neg \neg \bot = \neg T = \bot$
- Case 2: $p = T . \neg \neg T = \neg \bot = T$.

Properties of Axioms

- Consistency: A set of axioms is consistent if it allows all the axioms to be true at the same time.
 - For example, $\{p, \neg p\}$ is not consistent because p and $\neg p$ cannot be true at the same time.
- Independency: A set of axioms is indedendant
 if no axiom is a theorem of the other axioms.
 That is, no axioms can be deleted without
 changing the theorems that can be derived.

57

Proof Procedures

 A proof procedure P(A, B) takes a set A of axioms and a formula B as input, and returns true if it claims B is a theorem from A.

Two properties of P(A, B):

- Soundness: If P(A, B) returns true, then B is indeed a theorem of A.
- Completeness: If B is a theorem of A, then P(A, B) will return true in a finite number of steps.

Inference Systems

- A proof procedure is expressed as a set of rules (inference rules)
- Derive a formula (conclusion) is a theorem from the axioms (premises) by the rules
- Properties of an inference system:
 - Soundness: every proved formula must be a theorem.
 - Completeness: every theorem can be proved by the given inference system.

59

Premises, Conclusion and Proofs

- In logic, pieces of reasoning are analyzed using the notion of a proof.
- A proof consists of any number of *premises*, and any number of (intermediate and one final) *conclusions*.
- Premises are statements which are assumed to be true.
- We are merely interested in whether each conclusion follows logically from the premises: We are not interested in whether those premises are really true.

Deductive vs Inductive Validity

- A proof is said to be deductively valid if, assuming the premises to be true, the conclusion must be true as well.
- A proof is said to be *inductively* valid if, all the instances of the conclusion are shown to be true from the premises. The conclusion may be false if new premises are added.
- Example: We may show (x + y) = (y + x) for all natural numbers as an inductive theorem.
- If we add later an error value, err, to the natural numbers, then (x + y) = (y + x) may be false, because (1 + err) ≠ (err + 1).

61

Proof by Contradiction (Disproof)

- A statement is valid if it is impossible for the conclusion to be false while the premises are true.
- Thus, to demonstrate invalidity, all we have to do is to demonstrate that it is possible for the statement to be false while the premises are true.
- The easiest way to do this is to come up with a scenario (or possible world) in which all premises are true and the concluding statement false.

Decision Procedures

- A decision procedure is a sound proof procedure P(A, B) which stops on every input (A, B) with the answer "yes" or "no".
- Claim: A decision procedure is always complete.
- Proof: P(A, B) will always stop on every input (A, B). If B is a theorem, P(A, B) must return "yes" because P(A, B) is sound.
- Note: Some proof procedures may stop with "yes", "no", or "unknown", or loop forever.

63

Mathematical Logic

Four important fields:

- · Set theory,
- Model theory,
- · Proof theory, and
- Computability theory.

Computability Theory

- Computability theory, used to be called recursion theory, is a branch of mathematical logic and the theory of computation that studies computable functions.
- The field has since expanded to include the study of generalized computability and definability. In these areas, computability theory overlaps with proof theory and set theory.

65

Recursion Theory

- Recursion is used to construct objects and functions.
- Example: Given a constant symbol 0 of type T and a function symbol s: T → T, the objects of type T can be recursively constructed as follows:
- 1. 0 is an object of type T;
- 2. If n is an object of type T, so is s(n);
- 3. Nothing else will be an object of T.
- $T = \{0, s(0), s^2(0), s^3(0), ..., s^i(0), ...\}$, which has bijection to the set of natural numbers.

Recursion Theory

- Functions can be recursively defined in a similar way. Let pre, add, sub, mul be the
- pre: $T \rightarrow T$
- pre(0) = 0;
- pre(s(x)) = x.
- predecessor, addition, subtraction, and multiplication functions over the set of natural numbers:

67

Backus-Naur form (BNF)

- A notation technique for context-free grammars, often used to describe the syntax of programming languages
- Can be used to define the objects constructed by recursion.

```
• E.g., \langle N \rangle ::= 0 \mid s(\langle N \rangle) \text{ defines}

N = \{ 0, s(0), s^2(0), s^3(0), ..., s^i(0), ... \}
```

• $\langle B \rangle ::= \varepsilon \mid 0 \langle B \rangle \mid 1 \langle B \rangle \text{ defines}$ B = { ε , 0, 1, 00, 01, 10, 11, 000, ...}

Recursion Theory

Functions can be recursively defined, too.

```
pre: T \rightarrow T // predecessor
```

- pre(0) = 0;
- pre(s(x)) = x
- add: T, T \rightarrow T // addition
- add(0, y) = y;
- add(s(x), y) = s(add(x, y)).
- $<: T, T \to \{0, 1\} // less than$

• mul: T, T \rightarrow T // multiplication

• mul(s(x), y) = add(mul(x, y), y).

- (x < 0) = 0;
- (0 < s(y)) = 1;

• mul(0, y) = 0;

- s(x) < s(y) = x < y.
- sub: T, T \rightarrow T // subtraction
- sub(x, 0) = x;
- sub(x, s(y)) = sub(pre(x), y).

69

Computable Functions

- What does it mean "a function is computable" or "not computable"?
- Church-Turing Thesis: If a function can be computed, it must be computed by a Turing machine.
- Turing machine serves as a criterion to see if a function is computable or not: Do we have a Turing machine to compute it?
- Set of Turing machines is countable.
- Set of functions is uncountable. Thus, many, many functions are not computable.

Turing Completeness

- A computing model is **Turing complete** if the model can simulate a Turing machine, meaning it is theoretically capable of doing all tasks done by computers.
- Nearly all computers are Turing complete if the limitation of finite memory is ignored.
- Some logics are also Turing complete as they can also be used to simulate a Turing machine. As a result, some problems for such logics are not decidable.
- Computability theory helps us to decide if there exist decision procedures for some logics.