
 

CS:4350  Logic in Computer Science 
 

Midterm 2 
 Dec 17, 2020, 8-11pm 

 (100 points) 
 
On a chessboard, a knight can move up to eight other positions as shown in the 
figure. The Knight Tour problem is to find a sequence of knight’s consecutive 
moves so that each position of the board is visited exactly once.  Here the board 
can be of any dimension. For example, you may find below a solution of the 
4x5, 5x5, and 8x8 board, respectively. Note that no solutions exist for boards of 
size 3x3 or 4x4. 
 

 
 
 
 
 
 
 
 
 

 
Let the board dimension be (m, n). A position of the board is a pair of integers x/y, where 1 ≤ x 
≤ m and 1 ≤ y ≤ n. A solution of the Knight’s tour is a sequence of t positions, where t=mn: 

          a1/b1, a2/b2, …, at/bt 
such that each position ai/bi appears exactly once in the sequence and for any two consecutive 
positions ai/bi and ai+1/bi+1, a knight can go from ai/bi to ai+1/bi+1. In the following questions, for 
simplicity, we assume the starting position is 1/1. 

 
1. (50 points) Let the propositional variable px,y,z be true iff the knight’s position after z-1 

moves is x/y, where 1 ≤ x ≤ m, 1 ≤ y ≤ n, and 1 ≤ z ≤ t=mn. Thus, p1,1,1 will be true 
because 1/1 is the starting position. Please provide (a) a set S of propositional clauses 
such that the models of S match the solutions of the Knight’s tour; (b) the number of 
clauses and the total number of literals in S in terms of m and n; (c) the encoding 
function which converts px,y,z into an integer to be used in the DIMACS format for S; (d) 
all models of S when m=3 and n=4; (e) a method to let a SAT solver to find different 
solutions by adding into S some new clauses of length O(mn), if the SAT solver can 
produce at most one model per call . 
 



Answer: (a) [25 pts] There are 5 groups of clauses in S. We will use p(x,y,z) for px,y,z for 
convenience of writing; and if p(x,y,z) is true, we say “position x/y takes time slot z”.  
 

(i) The legal  moves of a knight: We will use a shorthand r(x, y) for (1 ≤ x ≤ m  ∧ 1 ≤ y ≤ 
n), whose values are easily decided when x and y are instantiated with values, so 
r(x,y)p(x,y,z) = p(x,y,z) if r(x,y) = 1 and r(x,y)p(x,y,z) = 0 if r(x,y)=0. 
For 1 ≤ x ≤ m, 1 ≤ y ≤ n, and 1 ≤ z < mn,  
   (¬p(x,y,z) | r(x-2,y-1)p(x-2,y-1,z+1) | r(x-2,y+1)p(x-2,y+1,z+1) | r(x-1,y-2)p(x-1,y-
2,z+1) | r(x-1,y+2)p(x-1,y+2,z+1) | r(x+1,y-2)p(x+1,y-2,z+1) | 
r(x+1,y+2)p(x+1,y+2,z+1) | r(x+2,y-1)p(x+2,y-1,z+1) | r(x+2,y+1)p(x+2,y+1,z+1)) 
There are mn(mn-1) propositional clauses from this pattern of clauses and each clause 
contains 3-9 literals, so the total number of literals is bound by 9mn(mn-1), or 
O((mn)2).   
 

(ii) At any time slot, at most one position can take that slot: For 1 ≤ x, u ≤ m, 1 ≤ y, v ≤ n, 
and 1 ≤ z ≤ mn, if (x ≠ u or y ≠ z), then (¬p(x,y,z) | ¬p(u,v,z)). 
The number of propositional clauses is (mn)2(mn-1) and the total number of literals is 
2(mn)2(mn-1), because each clause has 2 literals. 
 

(iii) Each position can take at most one time slot: For 1 ≤ x ≤ m, 1 ≤ y ≤ n, and 1 ≤ z < u ≤ 
mn, (¬p(x,y,z) | ¬p(x,y,u)). 
The number of propositional clauses is (mn)2(mn-1)/2 and the total number of literals 
is (mn)2(mn-1), because each clause has 2 literals. 
 

(iv) Each position must take at least one time slot: For 1 ≤ x ≤ m, 1 ≤ y ≤ n, and t=mn,  
(p(x,y,1) | p(x,y,2) | … | p(x,y,t)). 
The number of clauses is mn and each clause contains mn literals, so the total number 
of literals is (mn)2. Note that this is the set of positive clauses; without this group, 
there is a trivial model by setting each variable false. 
 

(v) The initial position: (p(1,1,1)). One clause and one literal. 
 

(b) [5 pts] Adding all the clause numbers in (a), we get O((mn)3). The total number of 
literals is also O((mn)3). 

 
(c) [5 pts]  code(x,y,z) = ((x-1)*n + (y-1))*m*n + z for 1 ≤ x ≤ m, 1 ≤ y ≤ n, and 1≤z≤mn. 
Thus, code(1,1,1) = 1, and code(m,n,mn) = (mn)2. For example, when m=3 and n=4, 
code(3,4,12) = 122 = 144. 
 
(d) [10 pts] There are two models: (false variables are not displayed)  

M1 = { p(1,1,1), p(2,3,2), p(3,1,3), p(1,2,4), p(2,4,5), p(3,2,6), p(1,3,7), p(3,4,8), p(2,2,9), 
p(1,4,10), p(3,3,11), p(2,1,12) } 
M2 = { p(1,1,1), p(2,3,2), p(3,1,3), p(1,2,4), p(2,4,5), p(3,2,6), p(1,3,7), p(2,1,8), p(3,3,9), 
p(1,4,10), p(2,2,11), p(3,4,12) } 



 
(e) [5 pts] Once a model is found, add the negation of all true variables in the model as one 
clause into the clause set S. . For example, the negation of M1 in (d) is  
 (¬p(1,1,1) | ¬p(2,3,2) | ¬p(3,1,3) | ¬p(1,2,4) | ¬p(2,4,5) | ¬p(3,2,6) | ¬p(1,3,7) | ¬p(3,4,8) | 
¬p(2,2,9) | ¬p(1,4,10) | ¬p(3,3,11) | ¬p(2,1,12)) 
The same model cannot be found by the SAT solver and this clause contains mn literals 
since the number of true variables in each model of S is mn. 

 
 
  

2. (50 points) Given the board dimension (m, n), let sol(L) be true iff L is a list of positions 
as a solution of the Knight Tour problem. A move is a relation among positions: move(a, 
b, c, d) is true iff a knight can move from position a/b to position c/d in a chessboard of 
size (m, n). Please (a) define sol(L) and move(a, b, c, d) in the first-order logic. You may 
use arithmetic operators and constants such as <, ≤, =, +, -, *, 0, 1, etc., without a 
definition. If you use other predicates, you must provide their definitions. (b) Write a 
Prolog program to solve the Knight Tour problem based on the first-order formulas in (a) 
and to display the solution as a sequence of positions. 
 

Answer: (a) [30 pts] 
 

∀x,y,z,u move(x,y,z,u) ↔ (1 ≤ x ≤ m ∧ 1 ≤ y ≤ n ∧ 1 ≤ z ≤ m ∧ 1 ≤ u ≤ n ∧  
   ((z=x-2 ∧ u=y+1) | (z=x-2 ∧ u=y+1) | (z=x-1∧ u=y-2) | (z=x-1∧ u=y+2) | (z=x+1∧ 
u=y-2) | (z=x+1∧ u=y+2) | (z=x+2∧ u=y-1) | (z=x+2∧ u=y+1))) 
 
∀L sol(L) ↔ initialPosition(L) ∧ distinct(L) ∧ length(L)= m*n ∧ knightMoves(L) 
 
In the following, we use Prolog list notations, where [] = nil, [X|Y] = cons(X, Y): 
 
∀X initialPosition([1/1 | X])   
 
∀X,Y distinct([]) ∧ distinct([X]) ∧ 

 (distinct([X|Y])  ↔  (¬member(X,Y) ∧ distinct(Y))) 
 
∀X,Y,L ¬member(X, []) ∧ (member(X, [Y|L]) ↔ (X=Y | member(X, L))) 
 
length([]) = 0 ∧ ∀X,Y length([X|Y]) = length(Y)+1 
 
∀X,Y,Z,U,L knightMoves([]) ∧ knightMoves([X]) ∧ 
       (knightMoves([X/Y, Z/U | L])  ↔  (move(X,Y,Z,U) ∧ knightMoves([Z/U | L])))  
 
 

 



The Prolog program below gives a more efficient implementation of sol(L) and 
move(a,b,c,d). 
 
(b) [20 pts] Prolog code: 

 
dimension(3, 4).   % definition of the board size 
 
% sol(X) succeeds if X is a solution of the Knights tour for a board of dimension(M, N). 
sol(X) :- 
    dimension(M, N),             % get the dimension of the board 
    generate_positions(M, N, L), % generate all positions of the board. 
    select(1/1, L, L1),            % remove the initial position. 
    T is M*N-1,                     % number of moves 
    sol2(T, 1/1, L1, X).          % look for T moves from the initial position 1/1 
 
% sol2(T, P, L, S) succeeds if L contains T positions and a knight 
% can visit all positions of L once from the current position P consecutively, 
% and S is the list of positions in the order of moves. 
sol2(0, P, [], [P]).                        % the current position P is the last position in solution. 
sol2(T, X/Y, L, [X/Y | R]) :-      % get partial solution R and add X/Y in the beginning 
    T>0, T1 is T-1,                       % more steps to go 
    select(X1/Y1, L, L1),             % pick the next position from the candidate list L 
    move(X, Y, X1, Y1),             % from X/Y to X1/Y1 is a knight’s move 
    sol2(T1, X1/Y1, L1, R).        % get partial solution from the remaining positions. 

 
% move(X, Y, X1, Y1) succeeds if a knight can move from X/Y to X1/Y1. 
move(X, Y, X1, Y1) :- X>2, Y>1, X1 is X-2, Y1 is Y-1. 
move(X, Y, X1, Y1) :- X>2, dimension(_, N), Y<N, X1 is X-2, Y1 is Y+1. 
move(X, Y, X1, Y1) :- X>1, Y>2, X1 is X-1, Y1 is Y-2. 
move(X, Y, X1, Y1) :- X>1, dimension(_, N), Y<N-1, X1 is X-1, Y1 is Y+2. 
move(X, Y, X1, Y1) :- dimension(M, _), X<M, Y>2, X1 is X+1, Y1 is Y-2. 
move(X, Y, X1, Y1) :- dimension(M, N), X<M, Y<N-1, X1 is X+1, Y1 is Y+2. 
move(X, Y, X1, Y1) :- dimension(M, _), X<M-1, Y>1, X1 is X+2, Y1 is Y-1. 
move(X, Y, X1, Y1) :- dimension(M, N), X<M-1, Y<N, X1 is X+2, Y1 is Y+1. 
 
% generate(M, N, L) succeeds if L is a complete list of pairs x/y, 1<=x<=M, 1<=y<=N. 
generate_positions(M, N, L) :- 
    gen_list(1, M, X), 
    gen_list(1, N, Y), 
    gen_pairs(X, Y, L). 
 
% gen_list( X, N, R) succeeds if R = [X, X+1, X+2, ..., N]. 
gen_list( X, N, []) :- X>N, !. 
gen_list( X, N, [X | Res]) :- Y is X+1, gen_list( Y, N, Res). 



 
% gen_pairs(X, Y, L) succeeds if X=[a1, ..., am], Y=[b1, ..., bn] and L = [a1/b1, am/bn] 
gen_pairs( [], Y, []). 
gen_pairs( [A|X], Y, Z) :- pairs(A, Y, R), gen_pairs(X, Y, Res), append(R, Res, Z). 
 
% pairs(X, Y, R) succeeds if Y=[b1, ..., bn] and R=[X/b1, ..., X/bn]. 
pairs(X, [], []). 
pairs(X, [Y | L], [X/Y | R]) :- pairs(X, L, R). 
 

 
Bonus Points (5 points): list typos in the textbook. 


