Example: A Feed-forward Network

\[a_5 = g_5(W_{3,5}a_3 + W_{4,5}a_4) \]
\[= g_5(W_{3,5}g_3(W_{1,3}a_1 + W_{2,3}a_2) + W_{4,5}g_4(W_{1,4}a_1 + W_{2,4}a_2)) \]

where \(a_i \) is the output and \(g_i \) is the activation function of node \(i \).

Learning = Training in Neural Networks

- Neural networks are trained using data referred to as a training set.
- The process is one of computing outputs, compare outputs with desired answers, adjust weights and repeat.
- The information of a Neural Network is in its structure, activation functions, weights, and
- Learning to use different structures and activation functions is very difficult.
- These weights are used to express the relative strength of an input value or from a connecting unit (i.e., in another layer). It is by adjusting these weights that a neural network learns.

Artificial Intelligence

Learning and Neural Networks

Readings: Chapter 19 & 20.5 of Russell & Norvig

Computing with NNs

- Different functions are implemented by different network topologies and unit weights.
- The lure of NNs is that a network need not be explicitly programmed to compute a certain function \(f \).
- Given enough nodes and links, a NN can learn the function by itself.
- It does so by looking at a training set of input/output pairs for \(f \) and modifying its topology and weights so that its own input/output behavior agrees with the training pairs.
- In other words, NNs learn by induction, too.
The Perceptron Learning Method

- Weight updating in perceptrons is very simple because each output node is independent of the other output nodes.

- The Perceptron Learning Method
 - If O is the value returned by the output unit for a given example and T is the expected output, then the unit’s error is
 \[Err = T - O \]
 - If the error Err is positive we need to increase O; otherwise, we need to decrease O.

Process for Developing Neural Networks

1. **Collect data** Ensure that application is amenable to a NN approach and pick data randomly.
2. **Separate Data into Training Set and Test Set**
3. **Define a Network Structure** Are perceptrons sufficient?
4. **Select a Learning Algorithm** Decided by available tools
5. **Set Parameter Values** They will affect the length of the training period.
6. **Training** Determine and revise weights
7. **Test** If not acceptable, go back to steps 1, 2, ..., or 5.
8. **Delivery of the product**

The Perceptron Learning Method

- If O is the value returned by the output unit for a given example and T is the expected output, then the unit’s error is
 \[Err = T - O \]

Normalizing Unit Thresholds.

- Notice that, if t is the threshold value of the output unit, then
 \[\text{step}(\sum_{j=1}^{n} W_j I_j) = \text{step}_0(\sum_{j=0}^{n} W_j I_j) \]
 where $W_0 = t$ and $I_0 = -1$.

- Therefore, we can always assume that the unit’s threshold is 0 if we include the actual threshold as the weight of an extra link with a fixed input value.

- This allows thresholds to be learned like any other weight.

- Then, we can even allow output values in $[0, 1]$ by replacing step_0 by the sigmoid function.
The Perceptron Learning Method

Since \(O = g(\sum_{j=0}^{n} W_j I_j) \), we can change \(O \) by changing each \(W_j \).

Assuming \(g \) is monotonic, to increase \(O \) we should increase \(W_j \) if \(I_j \) is positive, decrease \(W_j \) if \(I_j \) is negative.

Similarly, to decrease \(O \) we should decrease \(W_j \) if \(I_j \) is positive, increase \(W_j \) if \(I_j \) is negative.

This is done by updating each \(W_j \) as follows:

\[
W_j \leftarrow W_j + \alpha \times I_j \times (T - O)
\]

where \(\alpha \) is a positive constant, the learning rate.

Theoretic Background

Learn by adjusting weights to reduce error on training set.

The squared error for an example with input \(x \) and true output \(y \) is

\[
E = \frac{1}{2} Err^2 = \frac{1}{2} (y - h(x))^2 ,
\]

Perform optimization search by gradient descent:

\[
\frac{\partial E}{\partial W_j} = Err \times \frac{\partial Err}{\partial W_j} = Err \times \frac{\partial}{\partial W_j} \left(y - g(\sum_{j=0}^{n} W_j x_j) \right)
= -Err \times g'(in) \times x_j
\]

Learning a 5-place Minority Function

At first, collect the data (see below), then choose a structure (a perceptron with five inputs and one output) and the activation function (i.e., \(\text{step}_{-3} \)). Finally, set up parameters (i.e., \(W_i = 0 \)) and start to learn:

Assuming \(\alpha = 1 \), we have \(\text{Sum} = \sum_{i=1}^{5} W_i I_i, \text{Out} = \text{step}_{-3}(\text{Sum}), Err = T - \text{Out} \), and \(W_j \leftarrow W_j + I_j \times Err \).

| \(I_1 \) | \(I_2 \) | \(I_3 \) | \(I_4 \) | \(I_5 \) | \(T \) | \(W_1 \) | \(W_2 \) | \(W_3 \) | \(W_4 \) | \(W_5 \) | \(\text{Sum} \) | \(\text{Out} \) | \(\text{Err} \) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Learning a 5-place Minority Function

The same as the last example, except that $\alpha = 0.5$ instead of $\alpha = 1$. Sum = $\sum_{i=1}^{5} W_i I_i$, Out = step-3(Sum),

$$Err = T - Out,$$

$W_j \leftarrow W_j + I_j \times Err.$

<table>
<thead>
<tr>
<th></th>
<th>I_1</th>
<th>I_2</th>
<th>I_3</th>
<th>I_4</th>
<th>I_5</th>
<th>T</th>
<th>W_1</th>
<th>W_2</th>
<th>W_3</th>
<th>W_4</th>
<th>W_5</th>
<th>Sum</th>
<th>Out</th>
<th>Err</th>
</tr>
</thead>
<tbody>
<tr>
<td>e_1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>e_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>e_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>e_4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>e_5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>e_6</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>e_7</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>e_8</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

Multilayer Perceptrons

Layers are usually fully connected; numbers of hidden units typically chosen by hand.

<table>
<thead>
<tr>
<th></th>
<th>a_i</th>
<th>$W_{i,j}$</th>
<th>a_j</th>
<th>$W_{k,j}$</th>
<th>a_k</th>
</tr>
</thead>
</table>

Back-propagation learning

Output layer: same as for single-layer perceptron,

$$W_{j,i}' \leftarrow W_{j,i} + \alpha \times a_j \times \Delta_i$$

where $\Delta_i = Err_i \times g'(in_i)$

Hidden layer: back-propagate the error from the output layer:

$$\Delta_j = g'(in_j) \sum_i W_{j,i} \Delta_i .$$

Update rule for weights in hidden layer:

$$W_{k,j}' \leftarrow W_{k,j} + \alpha \times a_k \times \Delta_j .$$

(Many neuroscientists deny that back-propagation occurs in the brain)

Expressiveness of MLPs

All continuous functions w/ 2 layers, all functions w/ 3 layers
Back-propagation derivation

The squared error on a single example is defined as

$$ E = \frac{1}{2} \sum_i (y_i - a_i)^2, $$

where the sum is over the nodes in the output layer.

$$ \frac{\partial E}{\partial W_{k,j}} = -\sum_i (y_i - a_i) \frac{\partial a_i}{\partial W_{k,j}} = -\sum_i \Delta_i \frac{\partial}{\partial W_{k,j}} \left(\sum_j W_{j,i} a_j \right) $$

$$ = -\sum_i \Delta_i W_{j,i} \frac{\partial a_i}{\partial W_{k,j}} = -\sum_i \Delta_i W_{j,i} g'(in_i) \frac{\partial}{\partial W_{k,j}} \left(\sum_j W_{j,i} a_j \right) $$

$$ = -\sum_i \Delta_i W_{j,i} g'(in_i) \frac{\partial a_j}{\partial W_{k,j}} = -\sum_i \Delta_i W_{j,i} g'(in_i) a_k = -a_k \Delta_j $$

Decision trees

One possible representation for hypotheses. E.g., here is the “true” tree for deciding whether to wait:

Classification of examples is positive (T) or negative (F)
Expressiveness

Decision trees can express any function of the input attributes. E.g., for Boolean functions, each truth table row is a path from root to leaf:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A xor B</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

Trivially, there exists a consistent decision tree for any training set with one path to leaf for each example (unless \(f \) nondeterministic in \(x \)) but it probably won’t generalize to new examples.

Prefer to find more compact decision trees.

Hypothesis spaces

- How many distinct decision trees with \(n \) Boolean attributes
 - \(\# \) = number of Boolean functions
 - \(\# \) = number of distinct truth tables with \(2^n \) rows = \(2^{2^n} \)
Hypothesis spaces

- How many distinct decision trees with \(n \) Boolean attributes
 - = number of Boolean functions
 - = number of distinct truth tables with \(2^n \) rows = \(2^{2^n} \)
 - E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees
- How many purely conjunctive hypotheses (e.g., \(\text{Hungry} \land \neg \text{Rain} \))
 - Each attribute can be in (positive), in (negative), or out.

Decision tree learning

- Aim: find a small tree consistent with the training examples
- Idea: (recursively) choose “most significant” attribute as root of (sub)tree
- Reason: A good attribute splits the examples into subsets that are (ideally) “all positive” or “all negative”

```
None  Some  Full
Patrons?  French  Italian  Thai  Burger

Type?
```

Patrons? is a better choice—gives information about the classification

Hypothesis spaces

- How many distinct decision trees with \(n \) Boolean attributes
 - = number of Boolean functions
 - = number of distinct truth tables with \(2^n \) rows = \(2^{2^n} \)
 - E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees
- How many purely conjunctive hypotheses (e.g., \(\text{Hungry} \land \neg \text{Rain} \))
 - Each attribute can be in (positive), in (negative), or out.
 - \(3^n \) distinct conjunctive hypotheses
Information

- Suppose we have p positive and n negative examples at the root. Hence $I((p/(p+n), n/(p+n)))$ bits needed to classify a new example. E.g., for 12 restaurant examples and $p = n = 6$, we need 1 bit.
- Suppose an attribute A splits the examples E into subsets E_i, each of which (we hope) needs less information to complete the classification.
- Let E_i have p_i positive and n_i negative examples. Then $I((p_i/(p_i+n_i), n_i/(p_i+n_i)))$ bits needed to classify E_i.
- The remaining bits after choosing A will be
 \[
 \text{Remainder}(A) = \sum_i \frac{p_i + n_i}{p + n} I((p_i/(p_i+n_i), n_i/(p_i+n_i)))
 \]
 Idea: Choose A such that $\text{Remainder}(A)$ is minimal.

Example contd.

Decision tree learned from the 12 examples:

Substantially simpler than “true” tree—a more complex hypothesis isn’t justified by small amount of data
Summary

- Learning needed for unknown environments, lazy designers
- Learning agent = performance element + learning element
- Learning method depends on type of performance element, available feedback, type of component to be improved, and its representation
- For supervised learning, the aim is to find a simple hypothesis approximately consistent with training examples
- Learning performance = prediction accuracy measured on test set
- Most brains have lots of neurons; each neuron \(\approx \) linear–threshold unit (?)
- Perceptrons (one-layer networks) insufficiently expressive
- Multi-layer networks are sufficiently expressive; can be trained by gradient descent, i.e., error back-propagation
- Many applications: speech, driving, handwriting, credit cards, etc.