Logic and Inferences

Readings: Chapter 7 of Russell & Norvig.
Components of Propositional Logic

- Logic constants: True (1), and False (0)
- Propositional variables: $X = \{p_1, q_2, \ldots\}$, a set of Boolean variables
- Logical connectives: $\mathcal{F} = \{\neg, \land, \lor, \Rightarrow, \Leftrightarrow, \ldots\}$
- Logical sentences: $L(X, \mathcal{F})$, expressions built from X and \mathcal{F}
- Logical interpretations: a mapping θ from X to $\{0, 1\}$
- Logical evaluations: a process of applying a mapping θ to sentences in $L(X, \mathcal{F})$ (to obtain a value in $\{0, 1\}$)
Propositional Variables

- Also called Boolean variables, 0-1 variables.
- Every statement can be represented by a propositional variable:
 - \(p_1 = \text{“It is sunny today”} \)
 - \(p_2 = \text{“Tom went to school yesterday”} \)
 - \(p_3 = \text{“} f(x) = 0 \text{ has two solutions”} \)
 - \(p_4 = \text{“point } A \text{ is on line } BC \text{”} \)
 - \(p_5 = \text{“place a queen at position (1, 2) on a 8 by 8 chessboard”} \)
 - ...
Properties of Logical Connectives

- \land and \lor are \textit{commutative}
 \[
 \varphi_1 \land \varphi_2 \equiv \varphi_2 \land \varphi_1 \\
 \varphi_1 \lor \varphi_2 \equiv \varphi_2 \lor \varphi_1
 \]

- \land and \lor are \textit{associative}
 \[
 \varphi_1 \land (\varphi_2 \land \varphi_3) \equiv (\varphi_1 \land \varphi_2) \land \varphi_3 \\
 \varphi_1 \lor (\varphi_2 \lor \varphi_3) \equiv (\varphi_1 \lor \varphi_2) \lor \varphi_3
 \]

- \land and \lor are mutually \textit{distributive}
 \[
 \varphi_1 \land (\varphi_2 \lor \varphi_3) \equiv (\varphi_1 \land \varphi_2) \lor (\varphi_1 \land \varphi_3) \\
 \varphi_1 \lor (\varphi_2 \land \varphi_3) \equiv (\varphi_1 \lor \varphi_2) \land (\varphi_1 \lor \varphi_3)
 \]

- \land and \lor are related by \neg (DeMorgan’s Laws)
 \[
 \neg(\varphi_1 \land \varphi_2) \equiv \neg\varphi_1 \lor \neg\varphi_2 \\
 \neg(\varphi_1 \lor \varphi_2) \equiv \neg\varphi_1 \land \neg\varphi_2
 \]
Properties of Logical Connectives

\(\land, \Rightarrow, \text{ and } \Leftrightarrow \) are actually redundant:

\[
\begin{align*}
\varphi_1 \land \varphi_2 & \equiv \neg (\neg \varphi_1 \lor \neg \varphi_2) \\
\varphi_1 \Rightarrow \varphi_2 & \equiv \neg \varphi_1 \lor \varphi_2 \\
\varphi_1 \Leftrightarrow \varphi_2 & \equiv (\varphi_1 \Rightarrow \varphi_2) \land (\varphi_2 \Rightarrow \varphi_1)
\end{align*}
\]

We keep them all mainly for convenience.

Exercise Use the truth tables to prove all the logical equivalences seen so far.
Negation Normal Form (NNF)

A propositional sentence is said to be in Negation Normal Form if it contains no connectives other than \lor, \land, \neg, and if $\neg(\alpha)$ appears in the sentence, then α must be a propositional variable.

- $\neg p$, $p \lor q$, $p \lor (q \land \neg r)$ are NNF.
- $p \leftrightarrow q$, $\neg(p \lor q)$ are not NNF.

Every propositional sentence can be transformed into an equivalent NNF.

\[
\varphi_1 \leftrightarrow \varphi_2 \equiv (\varphi_1 \Rightarrow \varphi_2) \land (\varphi_2 \Rightarrow \varphi_1)
\]

\[
\varphi_1 \Rightarrow \varphi_2 \equiv \neg \varphi_1 \lor \varphi_2
\]

\[
\neg(\varphi_1 \land \varphi_2) \equiv \neg \varphi_1 \lor \neg \varphi_2
\]

\[
\neg(\varphi_1 \lor \varphi_2) \equiv \neg \varphi_1 \land \neg \varphi_2
\]
Conjunctive Normal Form (CNF)

A propositional sentence ϕ is said to be in Conjunctive Normal Form if ϕ is True, False, or a conjunction of α_i's:

$$\alpha_1 \land \alpha_2 \land \cdots \land \alpha_n,$$

where each α is a clause (a disjunction of β_j's):

$$\alpha = (\beta_1 \lor \beta_2 \lor \cdots \lor \beta_m),$$

where each β is called a literal, which is either a variable or the negation of a variable: $\beta = p$ or $\beta = \neg(p)$.

- $\neg p$, $p \lor q$, $p \land (q \lor \neg r)$ are CNF.
- $p \lor (q \land \neg r)$ are not CNF.
- Every CNF is an NNF but the opposite does not hold.
Existence of CNF

Every propositional sentence can be transformed into an equivalent CNF. That is, from NNF, using

\[(\varphi_1 \land \varphi_2) \lor \varphi_3 \equiv (\varphi_1 \lor \varphi_3) \land (\varphi_2 \lor \varphi_3)\]
Example: The 8-Queen Problem

Variables: $q_{i,j}$, $1 \leq i, j \leq 8$. $q_{i,j}$ is true iff a queen is placed in the square at row i and column j.

Clauses:

- Every row has a queen: For each $1 \leq i \leq 8$,

 $$q_{i,1} \lor q_{i,2} \lor q_{i,3} \lor q_{i,4} \lor q_{i,5} \lor q_{i,6} \lor q_{i,7} \lor q_{i,8}$$

- Two queens from the same row cannot see each other:

 $$\neg q_{i,1} \lor \neg q_{i,2}, ...$$

- Two queens from the same column cannot see each other:

 $$\neg q_{1,j} \lor \neg q_{2,j}, ...$$

- Two queens on the same diagonal cannot see each other:

 $$\neg q_{1,1} \lor \neg q_{2,2}, ...$$
Interpretations and Models

- A (partial) *interpretation* is a mapping from variables to \(\{0, 1\} \).
- An *complete interpretation* is if it maps every variables to \(\{0, 1\} \).
- An *interpretation* \(\theta \) can be extended to be a mapping from propositional sentences to \(\{0, 1\} \) if it obeys the following rules:
 - \(\theta(\neg p) = 1 \) if and only if \(\theta(p) = 0 \);
 - if \(\theta(p) = 1 \) or \(\theta(q) = 1 \) then \(\theta(p \lor q) = 1 \);
 - if \(\theta(p) = 1 \) and \(\theta(q) = 1 \) then \(\theta(p \land q) = 1 \); ...

Computing this interpretation is called *evaluation*.

- For any propositional sentence \(\Phi \), if there exists an interpretation \(\theta \) such that \(\theta(\Phi) = 1 \), then \(\theta \) is a *model* of \(\Phi \) and \(\Phi \) is said to be *satisfiable*.
- If every complete interpretation is a model for \(\Phi \), then \(\Phi \) is said to be *valid*.
Validity vs. Satisfiability

A sentence is

- **satisfiable** if it is true in *some* interpretation,
- **valid** if it is true in *every* possible interpretation.

Reasoning Tools for Propositional Logic:

- A tool to prove a sentence is valid needs only to return **yes** or **no**.
- A tool to prove a sentence is satisfiable often returns an interpretation under which the sentence is true.
- A sentence ϕ is valid if and only if $\neg\phi$ is unsatisfiable.
In practice, an inference system I for PL is a procedure that given a set $\Gamma = \{\alpha_1, \ldots, \alpha_m\}$ of sentences and a sentence φ, may reply “yes”, “no”, or run forever.

If I replies “yes” on input (Γ, φ), we say that Γ derives φ in I, or, I derives φ from Γ, or, φ is deduced (derived) from Γ in I. and write

$$\Gamma \vdash_I \varphi$$

Intuitively, I should be such that it replies “yes” on input (Γ, φ) only if φ is in fact deduced from Γ by I.

Inference Systems
All These Fancy Symbols!

- \(A \land B \Rightarrow C \)

is a sentence (an expression built from variables and logical connectives) where \(\Rightarrow \) is a logical connective.

- \(A \land B \models C \)

is a mathematical abbreviation standing for the statement: “every interpretation that makes \(A \land B \) true, makes \(C \) also true.” We say that the sentence \(A \land B \) entails \(C \).

- \(A \land B \vdash_{\mathcal{I}} C \)

is a mathematical abbreviation standing for the statement: “\(\mathcal{I} \) returns yes on input \((A \land B, C)\)” \([C \) is deduced from \(A \land B \) in \(\mathcal{I} \)].
All These Fancy Symbols!

In other words,

- \(\Rightarrow \) is a formal symbol of the logic, which is used by the inference system.

- \(\models \) is a shorthand for the entailment of formal sentences that we use to talk about the meaning of formal sentences.

- \(\vdash_{\mathcal{I}} \) is a shorthand for the inference procedure that we use to talk about the output of the inference system \(\mathcal{I} \).

The formal symbol \(\Rightarrow \) and the shorthands \(\models \), \(\vdash_{\mathcal{I}} \) are related.
All These Fancy Symbols!

- The sentence $\varphi_1 \Rightarrow \varphi_2$ is valid (always true) if and only if $\varphi_1 \models \varphi_2$.

- Example: $A \Rightarrow (A \lor B)$ is valid and $A \models (A \lor B)$

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>$A \lor B$</th>
<th>$A \Rightarrow (A \lor B)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>2.</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>3.</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>4.</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>
Soundness and Completeness

- An inference system \mathcal{I} is *sound* if it derives *only* sentences that logically follow from a given set of sentences:

 $$\text{if } \Gamma \vdash_{\mathcal{I}} \varphi \text{ then } \Gamma \models \varphi.$$

- An inference system \mathcal{I} is *complete* if it derives *all* sentences that logically follow from a given set of sentences:

 $$\text{if } \Gamma \models \varphi \text{ then } \Gamma \vdash_{\mathcal{I}} \varphi.$$

 or equivalently,

 $$\text{if } \Gamma \nvdash_{\mathcal{I}} \varphi \text{ then } \Gamma \not\models \varphi.$$
Inference in Propositional Logic

There are two (equivalent) types of inference systems of Propositional Logic:

- one based on truth tables (\mathcal{TT})
- one based on derivation rules (\mathcal{R})

Truth Tables The inference system \mathcal{TT} is specified as follows:

$$\{\alpha_1, \ldots, \alpha_m\} \vdash_{\mathcal{TT}} \varphi \iff \text{all the values in the truth table of}$$

$$(\alpha_1 \land \cdots \land \alpha_m) \Rightarrow \varphi \text{ are True.}$$
Inference by Truth Tables

The truth-tables-based inference system is sound:

\[\alpha_1, \ldots, \alpha_m \vdash_{TT} \varphi \] implies truth table of \((\alpha_1 \land \cdots \land \alpha_m) \Rightarrow \varphi\) all true

implies \((\alpha_1 \land \cdots \land \alpha_m) \Rightarrow \varphi\) is valid

implies \((\alpha_1 \land \cdots \land \alpha_m) \models \varphi\)

implies \(\alpha_1, \ldots, \alpha_m \models \varphi\)

It is also complete (exercise: prove it).

Its time complexity is \(O(2^n)\) where \(n\) is the number of propositional variables in \(\alpha_1, \ldots, \alpha_m, \varphi\).

We cannot hope to do better because a related, simpler problem (determining the satisfiability of a sentence) is NP-complete.

However, the really hard cases of propositional inference when we need \(O(2^n)\) time are somewhat rare.
An inference system in Propositional Logic can also be specified as a set \mathcal{R} of inference (or derivation) rules.

Each rule is actually a pattern premises/conclusion.

A rule applies to Γ and derives φ if

- some of the sentences in Γ match with the premises of the rule and
- φ matches with the conclusion.

A rule is sound if the set of its premises entails its conclusion.
Rule-Based Inference System

Inference Rules

- And-Introduction

\[
\frac{\alpha}{\alpha \land \beta} \quad \frac{\beta}{\alpha \land \beta}
\]

- And-Elimination

\[
\frac{\alpha \land \beta}{\alpha} \quad \frac{\alpha \land \beta}{\beta}
\]

- Or-Introduction

\[
\frac{\alpha}{\alpha \lor \beta} \quad \frac{\alpha}{\beta \lor \alpha}
\]
Inference Rules (cont’)

- **Implication-Elimination (aka Modus Ponens)**

\[
\alpha \Rightarrow \beta \quad \alpha \\
\hline
\beta
\]

- **Unit Resolution**

\[
\alpha \lor \beta \quad \neg \beta \\
\hline
\alpha
\]

- **Resolution**

\[
\alpha \lor \beta \quad \neg \beta \lor \gamma \\
\hline
\alpha \lor \gamma
\]

or, equivalently,

\[
\neg \alpha \Rightarrow \beta, \quad \beta \Rightarrow \gamma \\
\hline
\neg \alpha \Rightarrow \gamma
\]
Inference Rules (cont’d.)

- **Double-Negation-Elimination**
 \[
 \neg\neg\alpha \\
 \frac{}{\alpha}
 \]

- **False-Introduction**
 \[
 \alpha \land \neg\alpha \\
 \frac{}{False}
 \]

- **False-Elimination**
 \[
 False \\
 \frac{}{\beta}
 \]
Inference by Proof

We say there is a proof of φ from Γ in \mathcal{R} if we can derive φ by applying the rules of \mathcal{R} repeatedly to Γ and its derived sentences.

Example: a proof of P from $\{(P \lor H) \land \neg H\}$

1. $(P \lor H) \land \neg H$ by assumption
2. $P \lor H$ by \land-elimination applied to (1)
3. $\neg H$ by \land-elimination applied to (1)
4. P by unit resolution applied to (2),(3)
Inference by Proof

We can represent a proof more visually as a proof tree:

Example:

\[
\begin{array}{ccc}
(P \lor H) \land \neg H & \quad & (P \lor H) \land \neg H \\
\hline
P \lor H & \quad & \neg H \\
\hline
P
\end{array}
\]
More formally, there is a proof of φ from Γ in \mathcal{R} if
1. $\varphi \in \Gamma$ or,
2. there is a rule in \mathcal{R} that applies to Γ and produces φ or,
3. there is a proof of each $\varphi_1, \ldots, \varphi_m$ from Γ in \mathcal{R} and a rule that applies to $\{\varphi_1, \ldots, \varphi_m\}$ and produces φ.

Then, the inference system \mathcal{R} is specified as follows:

$$\Gamma \vdash_{\mathcal{R}} \varphi \quad \text{iff} \quad \text{there is a proof of } \varphi \text{ from } \Gamma \text{ in } \mathcal{R}$$
Soundness of Rule-Based Inferences

\mathcal{R} is sound if all of its rules are sound.

Example: the Resolution rule

\[
\alpha \lor \beta, \quad \neg \beta \lor \gamma \\
\overline{\alpha \lor \gamma}
\]

<table>
<thead>
<tr>
<th></th>
<th>α</th>
<th>β</th>
<th>γ</th>
<th>$\neg \beta$</th>
<th>$\alpha \lor \beta$</th>
<th>$\neg \beta \lor \gamma$</th>
<th>$\alpha \lor \gamma$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>False</td>
</tr>
<tr>
<td>2.</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>3.</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>4.</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>5.</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>6.</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>7.</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
<tr>
<td>8.</td>
<td>True</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
<td>True</td>
<td>True</td>
</tr>
</tbody>
</table>

All the interpretations that make both $\alpha \lor \beta$ and $\neg \beta \lor \gamma$ true (ie, 4,5,6,8) make $\alpha \lor \gamma$ also true.
The Rules of \mathcal{R}

\[
\begin{align*}
\alpha & \quad \beta \\
\hline
\alpha & \quad \beta \\
\hline
\alpha \land \beta \\
\hline
\alpha & \quad \beta \\
\hline
\alpha \land \beta \\
\hline
\alpha & \quad \beta \\
\hline
\alpha \lor \beta \\
\hline
\beta & \quad \alpha \\
\hline
\beta & \quad \alpha \\
\hline
\alpha \Rightarrow \beta \\
\hline
\alpha & \quad \beta \\
\hline
\alpha \lor \beta & \quad \neg \beta \\
\hline
\alpha \lor \beta & \quad \neg \beta \lor \gamma \\
\hline
\alpha & \quad \neg \neg \alpha \\
\hline
\alpha & \quad \alpha \land \neg \alpha \\
\hline
\text{False} & \quad \text{False} \\
\hline
\beta & \quad \beta \\
\hline
\end{align*}
\]
One Rule Suffices!

Assumptions:

\[
\begin{align*}
\beta & \quad \neg \beta \\
\hline
\text{False} & \quad \alpha & \quad \neg \beta
\end{align*}
\]

is a special case of \[\frac{\alpha \lor \beta \quad \neg \beta}{\alpha} \] when \(\alpha \) is \(\text{False} \).

\[
\begin{align*}
\alpha \lor \beta & \quad \neg \beta \\
\hline
\alpha & \quad \alpha \lor \beta \quad \neg \beta \lor \gamma
\end{align*}
\]

is a special case of \[\frac{\alpha \lor \beta \quad \neg \beta \lor \gamma}{\alpha \lor \gamma} \] when \(\gamma \) is \(\text{False} \).

To prove that \(\Gamma \Rightarrow \varphi \) is valid,

- Convert \(\Gamma \land \neg(\varphi) \) into a set of clauses.
- Repeatedly apply the Resolution Rule on the clauses.
- If \(\text{False} \) is derived out, then \((\Gamma \Rightarrow \varphi) \) is valid.
Resolution Proof

Example: A proof of P from $\{(P \lor H) \land \neg H\}$

- Convert $\{(P \lor H) \land \neg H\} \land \neg P$ into a set of clauses (CNF):
 $$\{(1) \ (P \lor H), \ (2) \ \neg H, \ (3) \ \neg P\}$$

- Apply the Resolution Rule:
 1. $(1) \ (P \lor H)$ and $(2) \ \neg H$ produces $(4) \ P$
 2. $(3) \ \neg P$ and $(4) \ P$ produces $False$

- Since $False$ is produced, so $((P \lor H) \land \neg H) \Rightarrow P$ is valid.
Proof by Contradiction

\[\Gamma \land \neg \varphi \vdash False \]

implies \((\Gamma \land \neg \varphi) \Rightarrow False \) is valid.
implies \(\neg(\Gamma \land \neg \varphi) \lor False \) is valid.
implies \(\neg \Gamma \lor \varphi \) is valid.
implies \(\Gamma \Rightarrow \varphi \) is valid.
An Example

Theorem: If \((p \iff q) \iff r\) and \(p \iff r\), then \(q\).

Obtain clauses from the premises and the negation of the conclusion.

- From \((p \iff q) \iff r\), we obtain:
 1. \(p \lor q \lor r\),
 2. \(\neg p \lor \neg q \lor r\),
 3. \(p \lor \neg q \lor \neg r\),
 4. \(\neg p \lor q \lor \neg r\).

- From \(p \iff r\) we obtain:
 5. \(\neg p \lor r\),
 6. \(p \lor \neg r\).

- From \(\neg q\), we obtain:
 7. \(\neg q\).

Apply Resolution to the clauses:

- From (7), (1): (8) \(p \lor r\)
- From (10), (6): (11) \(p\)
- From (7), (4): (9) \(\neg p \lor \neg r\)
- From (10), (9): (12) \(\neg p\)
- From (5), (8): (10) \(r\)
- From (11), (12): (13) \(\square\)
How to get CNF from \((p \iff q) \iff r\)

\[(p \iff q) \iff r \equiv ((p \iff q) \Rightarrow r) \land (r \Rightarrow (p \iff q))\]

\[(p \iff q) \Rightarrow r \equiv \neg (p \iff q) \lor r\]
\[\equiv (\neg p \iff q) \lor r\]
\[\equiv ((\neg p \Rightarrow q) \land (q \Rightarrow \neg p)) \lor r\]
\[\equiv ((p \lor q) \land (\neg q \lor \neg p)) \lor r\]
\[\equiv (p \lor q \lor r) \land (\neg q \lor \neg p \lor r)\]

\[r \Rightarrow (p \iff q) \equiv \neg r \lor (p \iff q)\]
\[\equiv \neg r \lor ((p \Rightarrow q) \land (q \Rightarrow p))\]
\[\equiv \neg r \lor ((\neg p \lor q) \land (\neg q \lor p))\]
\[\equiv (\neg p \lor q \lor \neg r) \land (\neg q \lor p \lor \neg r)\]
Some Resolution Strategies

- **Unit resolution**: Unit resolution only.
- **Input resolution**: One of the two clauses must be an input clause.
- **Set of support**: One of the two clauses must be from a designed set called *set of support*. New resolvent are added into the *set of support*.
- **Linear resolution**: The latest resolvent must be used in the current resolution.

Note: The first 3 strategies above are incomplete. The Unit resolution strategy is equivalent to the Input resolution strategy: a proof in one strategy can be converted into a proof in the other strategy.
Proof System for Satisfiability

- The Davis-Putnam-Logemann-Loveland (DPLL) method takes a set of input clauses and converts them into an equivalent set of unit clauses if the set is satisfiable.

- Inference Rules:
 \[S \cup \{\alpha \lor \beta, \neg \beta\} \]
 \[S \cup \{\alpha, \neg \beta\} \]
 : Unit Resolution
 \[S \cup \{\alpha \lor \beta, \beta\} \]
 \[S \cup \{\beta\} \]
 : Unit Subsumption
 \[S \]
 : Case Splitting
 \[S \cup \{\alpha\} \text{ or } S \cup \{\neg \alpha\} \]