Genetic Algorithms

22c: 145, Chapter 4.3

What is Evolutionary Computation?

An abstraction from the theory of biological evolution that is used to create optimization procedures or methodologies, usually implemented on computers, that are used to solve problems.

The Argument

Evolution has optimized biological processes;

therefore

Adoption of the evolutionary paradigm to computation and other problems can help us find optimal solutions.
Evolutionary Computing

- Genetic Algorithms
 - invented by John Holland (University of Michigan) in the 1960’s
- Evolution Strategies
 - invented by Ingo Rechenberg (Technical University Berlin) in the 1960’s
- Started out as individual developments, but converged in the later years

Natural Selection

- Limited number of resources
- Competition results in struggle for existence
- Success depends on fitness --
 - fitness of an individual: how well-adapted an individual is to their environment. This is determined by their genes (blueprints for their physical and other characteristics).
- Successful individuals are able to reproduce and pass on their genes

When changes occur ...

- Previously “fit” (well-adapted) individuals will no longer be best-suited for their environment
- Some members of the population will have genes that confer different characteristics than “the norm”. Some of these characteristics can make them more “fit” in the changing environment.
Genetic Change in Individuals

- Mutation in genes
 - may be due to various sources (e.g. UV rays, chemicals, etc.)

Start:
1001001001001001001001

After Mutation:
1001000001001001001001

Recombination (Crossover)

- occurs during reproduction -- sections of genetic material exchanged between two chromosomes

The Nature of Computational Problems

- Require search through many possibilities to find a solution
 - (e.g. search through sets of rules for one set that best predicts the ups and downs of the financial markets)
- Search space too big -- search won't return within our lifetimes
- Require algorithm to be adaptive or to construct original solution
 - (e.g. interfaces that must adapt to idiosyncrasies of different users)

Why Evolution Proves to be a Good Model for Solving these Types of Problems

- Evolution is a method of searching for an (almost) optimal solution
 - Possibilities -- all individuals
 - Best solution -- the most "fit" or well-adapted individual
- Evolution is a parallel process
 - Testing and changing of numerous species and individuals occur at the same time (or, in parallel)
- Evolution can be seen as a method that designs new (original) solutions to a changing environment

The Metaphor

<table>
<thead>
<tr>
<th>EVOLUTION</th>
<th>PROBLEM SOLVING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual</td>
<td>Candidate Solution</td>
</tr>
<tr>
<td>Fitness</td>
<td>Quality</td>
</tr>
<tr>
<td>Environment</td>
<td>Problem</td>
</tr>
</tbody>
</table>
Genetic Algorithms

- Closely follows a biological approach to problem solving
- A simulated population of randomly selected individuals is generated then allowed to evolve

Encoding the Problem

- Example: Looking for a new site which is closest to several nearby cities.
- Express the problem in terms of a bit string

 \[z = (1001010101011100) \]

 where the first 8 bits of the string represent the X-coordinate and the second 8 bits represent the Y-coordinate

Basic Genetic Algorithm

- Step 1. Generate a random population of \(n \) chromosomes
- Step 2. Assign a fitness value to each individual
- Step 3. Repeat until \(n \) children have been produced
 - Choose 2 parents based on fitness proportional selection
 - Apply genetic operators to copies of the parents
 - Produce new chromosomes
Fitness Function

- For each individual in the population, evaluate its relative fitness
- For a problem with \(m \) parameters, the fitness can be plotted in an \(m+1 \) dimensional space

Sample Search Space

- A randomly generated population of individuals will be randomly distributed throughout the search space

Image from http://www2.informatik.uni-erlangen.de/~jacob/Electrical/Java/MultiModalSearch/nats.017/Surface.gif

Genetic Operators

- Cross-over
- Mutation
Production of New Chromosomes

- 2 parents give rise to 2 children

```
Parents

Parents' children

Children are different due to crossing-over and mutation
```

Generations

- As each new generation of \(n \) individuals is generated, they replace their parent generation

- To achieve the desired results, typically 500 to 5000 generations are required

The Evolutionary Cycle

```
Population

Parents

Recombination

Mutation

Offspring

Replacement
```

Ultimate Goal
- Each subsequent generation will evolve toward the global maximum
- After sufficient generations a near optimal solution will be present in the population of chromosomes

Dynamic Evolution
- Genetic algorithms can adapt to a dynamically changing search space
- Seek out the moving maximum via a parasitic fitness function
 - as the chromosomes adapt to the search space, so does the fitness function

Basic Evolution Strategy
1. Generate some random individuals
2. Select the p best individuals based on some selection algorithm (fitness function)
3. Use these p individuals to generate c children
4. Go to step 2, until the desired result is achieved (i.e. little difference between generations)
Encoding

- Individuals are encoded as vectors of real numbers (object parameters)
 - \(\mathbf{op} = (o_1, o_2, o_3, ..., o_m) \)
- The strategy parameters control the mutation of the object parameters
 - \(\mathbf{sp} = (s_1, s_2, s_3, ..., s_m) \)
- These two parameters constitute the individual’s chromosome

Fitness Functions

- Need a method for determining if one solution is more optimal than another
- Mathematical formula
- Main difference from genetic algorithms is that only the most fit individuals are allowed to reproduce (elitist selection)

Forming the Next Generation

- Number of individuals selected to be parents \((\rho) \)
 - too many: lots of persistent bad traits
 - too few: stagnant gene pool
- Total number of children produced \((c) \)
 - limited by computer resources
 - more children \(\Rightarrow \) faster evolution
Mutation

- Needed to add new genes to the pool
 - optimal solution cannot be reached if a necessary gene is not present
 - bad genes filtered out by evolution
- Random changes to the chromosome
 - object parameter mutation
 - strategy parameter mutation
 - changes the step size used in object parameter mutation

Discrete Recombination

- Similar to crossover of genetic algorithms
- Equal probability of receiving each parameter from each parent
 - $(8, 12, 31, ..., 5)$ $(2, 5, 23, ..., 14)$
 - $(2, 12, 31, ..., 14)$

Intermediate Recombination

- Often used to adapt the strategy parameters
- Each child parameter is the mean value of the corresponding parent parameters
 - $(8, 12, 31, ..., 5)$ $(2, 5, 23, ..., 14)$
 - $(5, 8.5, 27, ..., 9.5)$
Example: Find the max value of \(f(x_1, \ldots, x_{100}) \).

- Population: real vectors of length 100.
- Mutation: randomly replace a value in a vector.
- Combination: Take the average of two vectors.

Evolution Process

- \(p \) parents produce \(c \) children in each generation
- Four types of processes:
 - \(p,c \)
 - \(p/r,c \)
 - \(p+c \)
 - \(p/r+c \)

\(p,c \)

- \(p \) parents produce \(c \) children using mutation only (no recombination)
- The fittest \(p \) children become the parents for the next generation
- Parents are not part of the next generation
- \(c \geq p \)
- \(p/r,c \) is the above with recombination
Forming the Next Generation

- Similar operators as genetic algorithms
 - mutation is the most important operator (to uphold the principal of strong causality)
 - recombination needs to be used in cases where each child has multiple parents
- The parents can be included in the next generation
 - smoother fitness curve

\[p+c \]

- \(p \) parents produce \(c \) children using mutation only (no recombination)
- The fittest \(p \) individuals (parents or children) become the parents of the next generation
- \(p/r+c \) is the above with recombination

Tuning a GA

- “Typical” tuning parameters for a small problem

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population size</td>
<td>50 - 100</td>
</tr>
<tr>
<td>Children per generation</td>
<td>population size</td>
</tr>
<tr>
<td>Crossovers</td>
<td>0 - 3</td>
</tr>
<tr>
<td>Mutations</td>
<td>< 5%</td>
</tr>
<tr>
<td>Generations</td>
<td>20 - 20,000</td>
</tr>
</tbody>
</table>

- Other concerns
 - population diversity
 - ranking policies
 - removal policies
 - role of random bias
Domains of Application

- Numerical, Combinatorial Optimization
- System Modeling and Identification
- Planning and Control
- Engineering Design
- Data Mining
- Machine Learning
- Artificial Life

Local Beam Search

- A generalization of Hill-climbing
- Start with p candidates
- Keep the best p neighbors of these p candidates in the next round.

Stochastic Beam Search

- Similar to Local Beam Search
- Randomly choose p neighbors in the next round.
- Keep better neighbors
- Keep worse neighbors with a probability
GA vs. Local Beam Search

- The starting part is the same
- GA uses both mutation and combination for next generations
- LBS uses all the neighbors (similar to mutation)
- Both keep best candidates for next round.

GA vs. Stochastic Beam Search

- The starting part is the same
- GA uses both mutation and combination for next generations
- SBS picks random neighbors (very much like mutation)
- GA keeps best candidates for next round.
- SBS may keep worse candidates for next round.

GA suitable for Rugged Terrain

- More of a challenge to optimize
- Easy to get stuck in many local maxima
- Need to adjust mutation and crossover rates
Drawbacks of GA

- Difficult to find an encoding for a problem
- Difficult to define a valid fitness function
- May not return the global maximum

Why use a GA?

- Requires little insight into the problem
- The problem has a very large solution space
- The problem is non-convex
- Does not require derivatives
- Objective function need not be smooth
- Variables do not need to be scaled
- Fitness function can be noisy (e.g., process data)
- When the goal is a *good* solution

When NOT to use a GA?

- If *global* optimality is required
- If problem *insight* can:
 - Significantly impact algorithm performance
 - Simplify problem representation
- If the problem is highly constrained
- If the problem is smooth and convex
 - Use a gradient-based optimizer
- If the search space is very small
 - Use enumeration
COMPUTATIONAL INTELLIGENCE or SOFT COMPUTING

- Neural Networks
- Evolutionary Algorithms
- Fuzzy Systems
- Evolutionary Programming
- Evolution Strategies
- Genetic Algorithms
- Genetic Programming

Taxonomy