AI is pretty hard stuff

I went to the grocery store, I saw the milk on the shelf and I bought it.

What did I buy?
- The milk?
- The shelf?
- The store?

An awful lot of knowledge of the world is needed to answer simple questions like this one.

Agents and Environments

An agent is a system that perceives its environment through sensors and acts upon that environment through effectors.

Agents include humans, robots, softbots, thermostats, etc.

Agents as Mappings

An agent can be seen as a mapping between percept sequences and actions.

\[\text{Agent} : \text{Percept}^* \rightarrow \text{Action}^* \]

The less an agents relies on its built-in knowledge, as opposed to the current percept sequence, the more autonomous it is.

A rational agent is an agent whose acts try to maximize some performance measure.
A vacuum-cleaner agent

<table>
<thead>
<tr>
<th>Percept sequence</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>[A, Clean]</td>
<td>Right</td>
</tr>
<tr>
<td>[A, Dirty]</td>
<td>Suck</td>
</tr>
<tr>
<td>[B, Clean]</td>
<td>Left</td>
</tr>
<tr>
<td>[B, Dirty]</td>
<td>Suck</td>
</tr>
<tr>
<td>[A, Clean], [A, Clean]</td>
<td>Right</td>
</tr>
<tr>
<td>[A, Clean], [A, Dirty]</td>
<td>Suck</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

function REFLEX-VACUUM-AGENT([location, status]) returns action
if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

Vacuum-cleaner world

Percepts: location and contents, e.g., [A, Dirty]
Actions: Left, Right, Suck, NoOp

Rationality

- What is the right function?
- Can it be implemented in a small agent program?
- Fixed performance measure evaluates the environment sequence
 - one point per square cleaned up in time T?
 - one point per clean square per time step, minus one per move?
 - penalize for > k dirty squares?
- Rational \neq omniscient
- Rational \neq successful
- Rational \Rightarrow exploration, learning, autonomy

More Examples of Artificial Agents

<table>
<thead>
<tr>
<th>Agent Type</th>
<th>Percepts</th>
<th>Actions</th>
<th>Goals</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical diagnosis system</td>
<td>Symptoms, findings, patient’s answers</td>
<td>Questions, tests, treatments</td>
<td>Healthy patient, minimize costs</td>
<td>Patient, hospital</td>
</tr>
<tr>
<td>Satellite image analysis system</td>
<td>Pixels of varying intensity, color</td>
<td>Print a categorization of scene</td>
<td>Correct categorization</td>
<td>Images from orbiting satellite</td>
</tr>
<tr>
<td>Part-picking robot</td>
<td>Pixels of varying intensity</td>
<td>Pick up parts and sort into bins</td>
<td>Place parts in correct bins</td>
<td>Conveyor belt with parts</td>
</tr>
<tr>
<td>Refinery controller</td>
<td>Temperature, pressure readings</td>
<td>Open, close valves; adjust temperature</td>
<td>Maximize purity, yield, safety</td>
<td>Refinery</td>
</tr>
<tr>
<td>Interactive English tutor</td>
<td>Typed words</td>
<td>Print exercises, suggestions, corrections</td>
<td>Maximize student’s score on test</td>
<td>Set of students</td>
</tr>
</tbody>
</table>
Rational Agents

The *rationality* of an agent depends on

- the *performance measure* defining the agent’s degree of success
- the *percept sequence*, the sequence of all the things perceived by the agent
- the agent’s *knowledge* of the environment
- the *actions* that the agent can perform

For each possible percept sequence, an *ideal* rational agent does whatever possible to maximize its performance, based on the percept sequence and its built-in knowledge.

Internet shopping agent

- Performance measure??
- Environment??
- Actuators??
- Sensors??

PEAS for an Automated Taxi

- The task of designing an automated taxi:
 - Performance measure?? safety, destination, profits, legality, comfort, . . .
 - Environment?? US streets/freeways, traffic, pedestrians, weather, . . .
 - Actuators?? steering, accelerator, brake, horn, speaker/display, . . .
 - Sensors?? video, accelerometers, gauges, engine sensors, keyboard, GPS, . . .
Environment Types

With respect to an agent, an environment may, or may not, be:

- **accessible**: the agent’s sensors detect all aspects relevant to the choice of action;
- **deterministic**: the next state is completely determined by the current state and the actions selected by the agent;
- **episodic**: the agent’s experience is divided into “episodes”; the quality of the agent’s actions does not depend on previous episodes;
- **static**: it does not change while the agent is deliberating;
- **discrete**: there are a limited number of distinct, clearly defined percepts and actions.
Environment types

<table>
<thead>
<tr>
<th>Observable??</th>
<th>Solitaire</th>
<th>Backgammon</th>
<th>E-shopping</th>
<th>Taxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deterministic??</th>
<th>Solitaire</th>
<th>Backgammon</th>
<th>E-shopping</th>
<th>Taxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>Partly</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Episodic??</th>
<th>Solitaire</th>
<th>Backgammon</th>
<th>E-shopping</th>
<th>Taxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Static??</th>
<th>Solitaire</th>
<th>Backgammon</th>
<th>E-shopping</th>
<th>Taxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Semi</td>
<td>Semi</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Discrete??</th>
<th>Solitaire</th>
<th>Backgammon</th>
<th>E-shopping</th>
<th>Taxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes/No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Single-agent??</th>
<th>Solitaire</th>
<th>Backgammon</th>
<th>E-shopping</th>
<th>Taxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
<td>Yes/No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Environment types

The environment type largely determines the agent design.

The real world is (of course)

- partially observable,
- stochastic (instead of deterministic),
- sequential (instead of episodic),
- dynamic (instead of static),
- continuous (instead of discrete),
- multi-agents (instead of single-agent).

Environment types: Vacuum-Cleaner

Percepts: location and contents, e.g., \(A, \text{Dirty} \)

Actions: Left, Right, Suck, NoOp

<table>
<thead>
<tr>
<th>Observable??</th>
<th>Deterministic??</th>
<th>Episodic??</th>
<th>Static??</th>
<th>Discrete??</th>
<th>Single-agent??</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real World</td>
<td>Simplified World</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Different Types of Agents

Agents programs can be divided in the following classes, with increasing level of sophistication:

- Simple reflex agents
- Goal-based agents
- Utility-based agents
- Learning agents

Agent Programs

Since an agent is just a mapping from percepts to actions, we can design a program to implement this mapping.

An agent program could be as simple as a table lookup. However:

- that might be impossible
- there might be a much more efficient solution
- the agent would have no autonomy

\(^{a}\) A chess playing agent, for instance, would need \(35^{100}\) table entries.
A Reflex Taxi-Driver Agent

- We cannot implement it as a table-lookup: the percepts are too complex.
- But we can abstract some portions of the table by coding common input/output associations.
- We do this with a list of condition/action rules:
 - if car-in-front-is-braking then brake
 - if light-becomes-green then move-forward
 - if intersection-has-stop-sign then stop

Reflex Taxi-Driver Agent with State

- Often, the agent must remember some of its percepts to take an action.
 - Ex: car in front signals it is turning left.
- It must also remember which actions it has taken.
 - Ex: loaded/unloaded passenger.
- In jargon, it must have internal state.
A Goal-based Taxi-Driver Agent

- Knowing about the world is not always enough to decide what to do.
 Ex: what direction do I take at an intersection?
- The agent needs goal information.
 Ex: passenger's destination
- Combining goal information with the knowledge of its actions, the agent can choose those actions that will achieve the goal.
- A new kind of decision-making is required ("what-if reasoning").
- **Search** and **Planning** are devoted to find action sequences that achieve an agent's goal.

Utility-based Taxi-Driver Agent

- There may be many ways to get to a destination but some may be better than others.
 Ex: this way is faster/cheaper/more comfortable/. . .
- A particular configuration of the world, a world state, can be assigned a utility (the quality of being useful) value for the agent.
- A sequence of actions is preferred if it leads to a goal state with higher utility value.
- A utility function helps the agent’s decision-making in case of
 1. conflicting goals (by helping find a trade-off).
 Ex: minimize trip time and also fuel consumption.
 2. several possible goals, none of which is achievable with certainty.

Reflex Taxi-Driver Agent with State

- To update its state the agent needs two kinds of knowledge:
 1. how the world evolves independently from the agent;
 Ex: an overtaking car gets closer with time.
 2. how the world is affected by the agent’s actions.
 Ex: if I turn left, what was to my right is now behind me.

Goal-based Agents

Goal-based Agents are much more flexible in
- responding to a changing environment;
- accepting different goals.
Learning Agents

- Critic
- Sensors
- Actuators
- Environment
- Performance standard
- Feedback
- Learning element
- Knowledge
- Problem generator
- Learning element
- Performance element
- Changes

Utility-based Agents

- State
- Sensors
- Actuators
- Environment
- Utility
- How the world evolves
- What the world is like now
- What my actions do
- What it will be like if I do action A
- How happy I will be in such a state
- What action I should do now

- What it will be like if I do action A
- How happy I will be in such a state
- What action I should do now