Problem formulation (1998)
- Suppose we are given a collection of documents on some broad topic
 - e.g., stanford, evolution, iraq
 - perhaps obtained through a text search
- Can we organize these documents in some manner?
 - Page rank offers one solution
 - HITS (Hypertext-Induced Topic Selection) is another
 - proposed at approx the same time

HITS Model
- Interesting documents fall into two classes
 1. Authorities are pages containing useful information
 - course home pages
 - home pages of auto manufacturers
 2. Hubs are pages that link to authorities
 - course bulletin
 - list of US auto manufacturers

Idealized view

Mutually recursive definition
- A good hub links to many good authorities
- A good authority is linked from many good hubs
- Model using two scores for each node
 - Hub score and Authority score
 - Represented as vectors \(h \) and \(a \)

Transition Matrix \(A \)
- HITS uses a matrix \(A[i, j] = 1 \) if page \(i \) links to page \(j \), \(0 \) if not
- \(A^T \), the transpose of \(A \), is similar to the PageRank matrix \(M \), but \(A^T \) has 1’s where \(M \) has fractions
Hub and Authority Equations

- The hub score of page P is proportional to the sum of the authority scores of the pages it links to:
 \[h = \lambda A a \]
 - Constant \(\lambda \) is a scale factor
- The authority score of page P is proportional to the sum of the hub scores of the pages it is linked from:
 \[a = \mu A^T h \]
 - Constant \(\mu \) is a scale factor

Iterative algorithm

- Initialize \(h, a \) to all 1s
- \(h = A a \)
- Scale \(h \) so that its max entry is 1.0
- \(a = A^T h \)
- Scale \(a \) so that its max entry is 1.0
- Continue until \(h, a \) converge

Existence and Uniqueness

- \(h = \lambda A a \)
- \(a = \mu A^T h \)
- \(h = \lambda \mu A A^T h \)
- \(a = \lambda \mu A^T A a \)

Under reasonable assumptions about \(A \), the dual iterative algorithm converges to vectors \(h^* \) and \(a^* \) such that:
- \(h^* \) is the principal eigenvector of the matrix \(AA^T \)
- \(a^* \) is the principal eigenvector of the matrix \(A^T A \)

Example

- \(A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \)
- \(A^T = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix} \)
- \(a(yahoo) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \)
- \(a(amazon) = \begin{bmatrix} 4/5 \\ 0.75 \\ 0.73 \end{bmatrix} \)
- \(a(m'soft) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \)
- \(h(yahoo) = \begin{bmatrix} 1 \\ 2/3 \\ 1/3 \end{bmatrix} \)
- \(h(amazon) = \begin{bmatrix} 0.71 \\ 0.73 \end{bmatrix} \)
- \(h(m'soft) = \begin{bmatrix} 0.29 \\ 0.27 \end{bmatrix} \)

Bipartite cores

- Most densely-connected core (primary core)
- Less densely-connected core (secondary core)
Secondary cores
- A single topic can have many bipartite cores
 - corresponding to different meanings, or points of view
 - abortion: pro-choice, pro-life
 - evolution: darwinian, intelligent design
 - jaguar: auto, Mac, NFL team, *panthera onca*
- How to find such secondary cores?

Non-primary eigenvectors
- AA^T and A^TA have the same set of eigenvalues
 - An eigenpair is the pair of eigenvectors with the same eigenvalue
 - The primary eigenpair (largest eigenvalue) is what we get from the iterative algorithm
- Non-primary eigenpairs correspond to other bipartite cores
 - The eigenvalue is a measure of the density of links in the core

Finding secondary cores
- Once we find the primary core, we can remove its links from the graph
- Repeat HITS algorithm on residual graph to find the next bipartite core
- Technically, not exactly equivalent to non-primary eigenpair model

Creating the graph for HITS
- We need a well-connected graph of pages for HITS to work well

Creating the graph for HITS
- We need a well-connected graph of pages for HITS to work well

Page Rank and HITS
- Page Rank and HITS are two solutions to the same problem
 - What is the value of an inlink from S to D?
 - In the page rank model, the value of the link depends on the links into S
 - In the HITS model, it depends on the value of the other links out of S
- The destinies of Page Rank and HITS post-1998 were very different
 - Why?

Web Spam
- Search has become the default gateway to the web
- Very high premium to appear on the first page of search results
 - e.g., e-commerce sites
 - advertising-driven sites
What is web spam?

- **Spamming** = any deliberate action solely in order to boost a web page’s position in search engine results, incommensurate with page’s real value
- **Spam** = web pages that are the result of spamming
- This is a very broad definition
 - SEO industry might disagree!
 - SEO = search engine optimization
- Approximately 10-15% of web pages are spam

Web Spam Taxonomy

- We follow the treatment by Gyongyi and Garcia-Molina [2004]
- **Boosting techniques**
 - Techniques for achieving high relevance/importance for a web page
- **Hiding techniques**
 - Techniques to hide the use of boosting
 - From humans and web crawlers

Boosting techniques

- **Term spamming**
 - Manipulating the text of web pages in order to appear relevant to queries
- **Link spamming**
 - Creating link structures that boost page rank or hubs and authorities scores

Term Spamming

- **Repetition**
 - of one or a few specific terms e.g., free, cheap, sale, promotion, ...
 - Goal is to subvert **if-idf** ranking schemes
 - The **tf-idf** weight (term frequency–inverse document frequency) is a weight often used in information retrieval and text mining. This weight is a statistical measure used to evaluate how important a word is to a document in a collection or corpus (a large and structured set of texts). The importance increases proportionally to the number of times a word appears in the document but is offset by the frequency of the word in the corpus. Variations of the tf-idf weighting scheme are often used by search engines to score and rank a document’s relevance given a user query.

- **Dumping**
 - of a large number of unrelated terms
 - e.g., copy entire dictionaries
- **Weaving**
 - Copy legitimate pages and insert spam terms at random positions
- **Phrase Stitching**
 - Glue together sentences and phrases from different sources

Term spam targets

- Body of web page
- Title
- URL
- HTML meta tags
- Anchor text
Link spam

- Three kinds of web pages from a spammer's point of view
 - Inaccessible pages
 - Accessible pages
 - e.g., web log comments pages
 - spammer can post links to his pages
 - Own pages
 - Completely controlled by spammer
 - May span multiple domain names

Link Farms

- Spammer’s goal
 - Maximize the page rank of target page \(t \)
- Technique
 - Get as many links from accessible pages as possible to target page \(t \)
 - Construct “link farm” to get page rank multiplier effect

Link Farms

One of the most common and effective organizations for a link farm

Analysis

Suppose rank contributed by accessible pages = \(x \)
Let page rank of target page = \(y \)
Rank of each “farm” page = \(\beta y/M + (1-\beta)/N \)
\[y = x + \beta M[\beta y/M + (1-\beta)/N] + (1-\beta)/N \]
\[= x + \beta^2 y + \beta(1-\beta)M/N + (1-\beta)/N \]
Very small; ignore
\[y = x/(1-\beta^2) + cM/N \text{ where } c = \beta/(1+\beta) \]

Hiding techniques

- Content hiding
 - Use same color for text and page background
- Cloaking
 - Return different page to crawlers and browsers
- Redirection
 - Alternative to cloaking
 - Redirects are followed by browsers but not crawlers
Detecting Spam

- **Term spamming**
 - Analyze text using statistical methods e.g., Naïve Bayes classifiers
 - Similar to email spam filtering
 - Also useful: detecting approximate duplicate pages

- **Link spamming**
 - Open research area
 - One approach: TrustRank

TrustRank idea

- **Basic principle:** approximate isolation
 - It is rare for a “good” page to point to a “bad” (spam) page

- **Sample a set of “seed pages” from the web**

- **Have an oracle (human) identify the good pages and the spam pages in the seed set**
 - Expensive task, so must make seed set as small as possible

Trust Propagation

- **Call the subset of seed pages that are identified as “good” the “trusted pages”**
- **Set trust of each trusted page to 1**
- **Propagate trust through links**
 - Each page gets a trust value between 0 and 1
 - Use a threshold value and mark all pages below the trust threshold as spam

Example

```
1 --2-- 3
  |
4 --5-- 6
  |
7
```

Trust is additive

Rules for trust propagation

- **Trust attenuation**
 - The degree of trust conferred by a trusted page decreases with distance
- **Trust splitting**
 - The larger the number of outlinks from a page, the less scrutiny the page author gives each outlink
 - Trust is “split” across outlinks

```
Suppose trust of page p is t(p)
- Set of outlinks O(p)
- For each q in O(p), p confers the trust βt(p)/|O(p)| for 0<β<1
- Trust is additive
  - Trust of p is the sum of the trust conferred on p by all its inlinked pages
- Note similarity to Topic-Specific Page Rank
  - Within a scaling factor, trust rank = biased page rank with trusted pages as teleport set
```
Picking the seed set

- Two conflicting considerations
 - Human has to inspect each seed page, so seed set must be as small as possible
 - Must ensure every “good page” gets adequate trust rank, so need make all good pages reachable from seed set by short paths

Approaches to picking seed set

- Suppose we want to pick a seed set of k pages
- PageRank
 - Pick the top k pages by page rank
 - Assume high page rank pages are close to other highly ranked pages
 - We care more about high page rank “good” pages