Web Mining

Link Analysis Algorithms
Page Rank

Ranking web pages

- Web pages are not equally “important”
 - www.joe-schmoe.com v www.stanford.edu
- Inlinks as votes
 - www.stanford.edu has 23,400 inlinks
 - www.joe-schmoe.com has 1 inlink
- Are all inlinks equal?
 - Recursive question!

Simple recursive formulation

- Each link’s vote is proportional to the importance of its source page
- If page P with importance x has n outlinks, each link gets x/n votes
Simple “flow” model

The web in 1839

\[y = y/2 + a/2 \]
\[a = y/2 + m \]
\[m = a/2 \]

Solving the flow equations

- 3 equations, 3 unknowns, no constants
 - No unique solution
 - All solutions equivalent modulo scale factor
- Additional constraint forces uniqueness
 - \(y + a + m = 1 \)
 - \(y = 2/5, a = 2/5, m = 1/5 \)
- Gaussian elimination method works for small examples, but we need a better method for large graphs

Matrix formulation

- Matrix \(M \) has one row and one column for each web page
- If page \(j \) has \(n \) outlinks and links to page \(i \)
 - Then \(M_{ij} = 1/n \)
 - Else \(M_{ij} = 0 \)
- \(M \) is a column stochastic matrix
 - Columns sum to 1
- Suppose \(r \) is a vector with one entry per web page
 - \(r_i \) is the importance score of page \(i \)
 - Call it the rank vector
Example

Suppose page j links to 3 pages, including i

![Diagram of a directed graph with page j linking to pages i, M, and r]

$M = \begin{bmatrix} 1/3 & 1/3 & 1/3 \end{bmatrix}$

$\mathbf{r} = \begin{bmatrix} r_i \\ r_j \\ r_k \end{bmatrix}$

Example

Eigenvector formulation

- The flow equations can be written $\mathbf{r} = M\mathbf{r}$
- So the rank vector is an eigenvector of the stochastic web matrix
 - In fact, its first or principal eigenvector, with corresponding eigenvalue 1

The web matrix for the example:

$M = \begin{bmatrix} y & a & m \\ 1/2 & 1/2 & 0 \\ 1/2 & 0 & 1 \end{bmatrix}$

The rank vector:

$\mathbf{r} = \begin{bmatrix} r_y \\ r_a \\ r_m \end{bmatrix} = \begin{bmatrix} y \\ a \\ m \end{bmatrix}$

Example

$y = y/2 + a/2$

$a = y/2 + m$

$m = a/2$
Power Iteration method

- Simple iterative scheme (aka relaxation)
- Suppose there are N web pages
- Initialize: \(r^0 = [1/N, \ldots, 1/N]^T \)
- Iterate: \(r^{k+1} = Mr^k \)
- Stop when \(|r^{k+1} - r^k|_1 < \varepsilon \)
 - \(|x|_1 = \sum_{i=1}^N |x_i| \) is the \(L_1 \) norm
 - Can use any other vector norm e.g., Euclidean

Power Iteration Example

![Diagram with web page connections and link probabilities]

<table>
<thead>
<tr>
<th></th>
<th>y</th>
<th>a</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>1/2</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>1/2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>m</td>
<td>0</td>
<td>1/2</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y</th>
<th>1/3</th>
<th>1/3</th>
<th>5/12</th>
<th>3/8</th>
<th>2/5</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1/3</td>
<td>1/2</td>
<td>1/3</td>
<td>11/24</td>
<td>\ldots</td>
</tr>
<tr>
<td>m</td>
<td>1/3</td>
<td>1/6</td>
<td>1/4</td>
<td>1/6</td>
<td>1/5</td>
</tr>
</tbody>
</table>

Spider traps

- A group of pages is a spider trap if there are no links from within the group to outside the group
 - Random surfer gets trapped
- Spider traps violate the conditions needed for the random walk theorem
Microsoft becomes a spider trap

Random teleports

- The Google solution for spider traps
- At each time step, the random surfer has two options:
 - With probability β, follow a link at random
 - With probability $1-\beta$, jump to some page uniformly at random
- Common values for β are in the range 0.8 to 0.9
- Surfer will teleport out of spider trap within a few time steps

Matrix formulation

- Suppose there are N pages
 - Consider a page j, with set of outlinks $O(j)$
 - We have $M_{ij} = 1/|O(j)|$ when $|O(j)|>0$ and j links to i; $M_{ij} = 0$ otherwise
 - The random teleport is equivalent to
 - adding a teleport link from j to every other page with probability $(1-\beta)/N$
 - reducing the probability of following each outlink from $1/|O(j)|$ to $\beta/|O(j)|$
 - Equivalent: tax each page a fraction $(1-\beta)$ of its score and redistribute evenly
Page Rank

- Construct the N\times N matrix \(A \) as follows
 - \(A_{ij} = \beta M_{ij} + (1-\beta)/N \)
- Verify that \(A \) is a stochastic matrix
- The page rank vector \(r \) is the principal eigenvector of this matrix
 - satisfying \(r = Ar \)
- Equivalently, \(r \) is the stationary distribution of the random walk with teleports

Previous example with \(\beta = 0.8 \)

![Graph with labels and matrix values]

Dead ends

- Pages with no outlinks are "dead ends" for the random surfer
 - Nowhere to go on next step
Microsoft becomes a dead end

Dealing with dead-ends
- Teleport
 - Follow random teleport links with probability 1.0 from dead-ends
 - Adjust matrix accordingly
- Prune and propagate
 - Preprocess the graph to eliminate dead-ends
 - Might require multiple passes
 - Compute page rank on reduced graph
 - Approximate values for deadends by propagating values from reduced graph

Computing page rank
- Key step is matrix-vector multiply
 - $r^{\text{new}} = Ar^{\text{old}}$
- Easy if we have enough main memory to hold A, r^{old}, r^{new}
- Say $N = 1$ billion pages
 - We need 4 bytes for each entry (say)
 - 2 billion entries for vectors, approx 8GB
 - Matrix A has N^2 entries
 - 10^{18} is a large number!
Sparse matrix formulation

- Although A is a dense matrix, it is obtained from a sparse matrix M.
 - 10 links per node, approx 10N entries
- We can restate the page rank equation
 - $r = \beta Mr + [(1-\beta)/N]N$
 - $[(1-\beta)/N]N$ is an N-vector with all entries $(1-\beta)/N$
- So in each iteration, we need to:
 - Compute $r_{\text{new}} = \beta Mr_{\text{old}}$
 - Add a constant value $(1-\beta)/N$ to each entry in r_{new}

Sparse matrix encoding

- Encode sparse matrix using only nonzero entries
 - Space proportional roughly to number of links
 - say 10N, or $4\times10\times1$ billion = 40GB
 - still won’t fit in memory, but will fit on disk

<table>
<thead>
<tr>
<th>source node</th>
<th>degree</th>
<th>destination nodes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>1, 5, 7</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>17, 64, 113, 117, 245</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>13, 23</td>
</tr>
</tbody>
</table>

Basic Algorithm

- Assume we have enough RAM to fit r_{new}, plus some working memory
 - Store r_{old} and matrix M on disk

Basic Algorithm:

- Initialize: $r_{\text{old}} = [1/N]N$
- Iterate:
 - Update: Perform a sequential scan of M and r_{old} and update r_{new}
 - Write out r_{new} to disk as r_{old} for next iteration
 - Every few iterations, compute $|r_{\text{new}} - r_{\text{old}}|$ and stop if it is below threshold
Update step

Initialize all entries of \(r_{\text{new}} \) to \((1-\beta)/N\)
For each page \(p \) (out-degree \(n \)):
- Read into memory: \(p, n, \text{dest}_1, \ldots, \text{dest}_n, r_{\text{old}}(p) \)
- for \(j = 1 \ldots n \):
 \[r_{\text{new}}(\text{dest}_j) += \beta r_{\text{old}}(p)/n \]

Analysis

- In each iteration, we have to:
 - Read \(r_{\text{old}} \) and \(M \)
 - Write \(r_{\text{new}} \) back to disk
 - IO Cost = \(2|r| + |M|\)
- What if we had enough memory to fit both \(r_{\text{new}} \) and \(r_{\text{old}} \)?
- What if we could not even fit \(r_{\text{new}} \) in memory?
 - 10 billion pages

Block-based update algorithm
Analysis of Block Update

- Similar to nested-loop join in databases
 - Break \(r^{\text{new}} \) into \(k \) blocks that fit in memory
 - Scan \(M \) and \(r^{\text{old}} \) once for each block
- \(k \) scans of \(M \) and \(r^{\text{old}} \)
 - \(k(|M| + |r|) + |r| = k|M| + (k+1)|r| \)
- Can we do better?
- Hint: \(M \) is much bigger than \(r \) (approx 10-20x), so we must avoid reading it \(k \) times per iteration

Block-Stripe Update algorithm

Block-Stripe Analysis

- Break \(M \) into stripes
 - Each stripe contains only destination nodes in the corresponding block of \(r^{\text{new}} \)
- Some additional overhead per stripe
 - But usually worth it
- Cost per iteration
 - \(|M|(1+c) + (k+1)|r|\)